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a b s t r a c t

A pendulum rotating under vertical base excitation is considered from the viewpoint of energy extrac-
tion. Since the uncontrolled system can exhibit complex dynamics, we consider an added control torque
and seek the optimal period-1 rotational motion for maximum energy extraction. We find, and con-
eywords:
arametric pendulum
nergy extraction
eriod-1 rotation

firm through complementary methods, that the limiting optimal motion for harmonic base excitation is
piecewise-constant: there are extended dwells at the top and bottom positions with rapid transitions
in between. The limiting optimal solution gives about a quarter more energy extraction than uniform
rotation, in the limit of no damping. Approximating motions with finite-speed transitions can be almost
as good. Base excitations other than pure sinusoids are also considered and the corresponding optima
amping determined.

. Introduction and motivation

A pendulum is an archetype of strongly nonlinear dynamical
ystems. Pendulums with vertical base excitation (parametric forc-
ng) exhibit rich dynamic behaviour and have been extensively
tudied from both theoretical and applied perspectives. Theoret-
cal studies (Leven and Koch, 1981; Clifford and Bishop, 1995) have
ocused on constructing stability charts, and studying the bifur-
ation scenarios leading to rotational motions, equilibria, chaos
nd other complex responses. From an applied perspective, energy
xtraction from a base excited pendulum has been proposed. The
ynamics of the damped, vertically excited pendulum (with various
odifications) have been studied by a number of authors (Horton

t al., 2011; Xu and Wiercigroch, 2007; Lenci et al., 2008; Xu et al.,
005). While our interest here is in energy extraction rather than
ifurcation analysis, it may be worthwhile to consider the results
f some of these previous studies to motivate the present work.

A schematic of the damped, parametrically excited pendulum
s shown in Fig. 1 (left), wherein a vertical, harmonically varying
isplacement is applied to the pivot point. The dynamics of this

ystem is governed by

¨ + ��̇ + (1 + p cos(ωt)) sin(�) = 0, (1)
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and was studied in detail by Xu et al. (2005). In Eq. (1), � represents
the viscous damping, p is the strength of parametric excitation, and
ω is the excitation frequency. It was observed in the work of Xu et al.
(2005) that this system can exhibit a variety of dynamic behaviours
such as period-1 oscillations, period-2 oscillations, period-1 rota-
tions, period-2 rotations, oscillation–rotations, chaos, etc. Two such
important motions, namely period-2 oscillations (one oscillation
per two cycles of forcing) and period-1 rotations, are plotted in
Fig. 1 (right) for different sets of parameters. Most importantly, such
motions can co-exist in certain parameter regimes. For example, for
the system of Eq. (1), period-2 oscillations and period-1 rotations
co-exist for � = 0.1, p = 0.8 and ω = 2.1.

In this paper, we are interested in period-1 rotational motions
of the pendulum, wherein the pendulum completes one rotation
during one period of parametric forcing. However, the period-1
motions may not necessarily be stable. Even if the rotations are sta-
ble, there could be other co-existing motions such as oscillations
with competing basins of attraction. Hence, in practical applica-
tions, active control is necessary to put the pendulum onto the
desired period-1 rotation and stabilize that motion.

To illustrate this point more clearly, we briefly consider some
studies of the system from the literature. The following summary of
some of the complex dynamics of the uncontrolled vertically driven
pendulum will serve to both emphasize the unavoidable need for
control as well as the difficulty in selecting the most appropriate
regime of operation.
A typical bifurcation diagram of the pendulum system of Fig. 1
from a recent study by Horton et al. (2011) is presented in Fig. 2.
Herein, the X-axis represents excitation frequency, and the Y-axis
represents excitation strength. The curves of interest here are the
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Fig. 1. Left: A schematic of a base excited, vertical pendulum. Right: Typical oscillation and period-1 rotation motions of Eq. (1) for different excitation strengths.

Fig. 2. Left: A typical bifurcation diagram for a damped parametrically excited pendulum in the excitation frequency-amplitude plane. The figure shows the existence and
bifurcations of rotational motions. Of particular relevance are the black and grey curves E, G and J which indicate the bifurcations of the period-1 and period-2 rotational
m ion an
H

b
i
p
f
J
r
t
t
i
e
m
(
i
v
f
a
I
a

t
e
o

otions. Right: Basins of attraction on the phase plane with co-existence of rotat
orton et al. (2011).

lack and grey ones marked E, G and J in the figure. These curves
ndicate the bifurcations of the period-1 and period-2 rotations. In
articular, for a fixed ω, as the excitation strength p is increased
rom zero, the period-1 rotational motions are born on the curve
. These period-1 motions lose stability on the curve G and finally
egain stability along the curve E. Thus, from Fig. 2, we can see that
here exists a large region in the p–ω parameter space (between
he curves G and E) wherein the period-1 rotation is unstable. Even
n the region where the period-1 rotation is stable, there may co-
xist other attractors and the basin of attraction of the desired
otion may be relatively narrow. To illustrate, consider Fig. 2

right) wherein the parameter combination of p = 0.5 and ω = 1.8
s considered. A stable period-1 rotation exists for these parameter
alues (see Fig. 2 (left)). However, as seen in Fig. 2 (right), there exist
our attractors for this parameter set and we will have to start in the
ppropriate basin to be able to reach the desired period-1 motion.
t is thus clear that in practical applications of energy extraction,
ctive control will be necessary.
In this paper, we consider the setting of a wave-energy extrac-
ion device idealized as a pendulum subjected to vertical base
xcitation from waves, wherein, from among the variety of peri-
dic motions, period-1 rotational motions are established through
d oscillation motions (see text for further details). Both panels are adopted from

active control. In this setting, we ask the following question: Which
period-1 trajectory maximizes the energy extracted per cycle?

The answer will shed light on fundamental limits on the max-
imum available energy per cycle that can be extracted from the
pendulum in practical applications. We initially address the prob-
lem through a calculus of variations approach but obtain somewhat
puzzling results, and then use approximate numerical optimization
using truncated Fourier series with undetermined coefficients to
obtain better understanding. We finally revisit the variational for-
mulation with a small regularizing parameter, which gives results
consistent with both of the previous solutions, and provides further
understanding of the role played by damping. We close the paper
with a discussion of non-sinusoidal excitations.

2. Solution using the calculus of variations approach

The actively-controlled pendulum system, i.e., with an applied
torque T (which includes the control-torque, as well any sources

of dissipation), is depicted in Fig. 3. The equation of motion of this
pendulum system, after suitable non-dimensionalization, is

�̈ − (1 + ı sin(ωt)) sin(�) = T(t), (2)
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Fig. 3. A schematic of a base excited, vertical pendulum with applied torque.

here � is the angle made by the pendulum with the vertical, ı
s the non-dimensional base excitation amplitude, ω is the non-
imensional excitation frequency, and T is the external torque
inclusive of damping, control torque, and other loads). Note that
he form of Eq. (2) is slightly different from Eq. (1) due to the dif-
erences in the definition of � (see Figs. 1 (left) and 3).

We assume that the actively controlled pendulum executes
eriod-1 rotations. More precisely(

t + 2�

ω

)
= �(t) + 2� (3)

˙
(

t + 2�

ω

)
= �̇(t). (4)

The average power output of the system is

=
∫ 2�

0
T d�

2�/ω
, (5)

hich can be rewritten as

=
∫ 2�/ω

0
T�̇ dt

2�/ω
, (6)

tilizing Eq. (2), the objective function (representing power output)
ecomes

= ω

2�

∫ 2�/ω

0

(�̈�̇ − (1 + ı sin(ωt)) sin(�)�̇) dt. (7)

ote that the first term in the integrand is
∫ 2�/ω

0
�̈�̇ dt =

2�/ω

0
d(�̇2/2), which vanishes owing to the periodicity require-

ents of Eq. (4). Thus our objective function becomes

(�, �̇) = − ω

2�

∫ 2�/ω

0

(1 + ı sin(ωt))�̇ sin(�) dt. (8)

ctually, even the integral of �̇ sin(�) over one period is zero. We
re interested in the trajectory �(t) which minimizes P. Using rou-
ine variational calculus (e.g., Weinstock, 1974), we arrive at the
ollowing Euler–Lagrange equation governing the extremum tra-
ectory
ω cos(ωt) sin(�) = 0. (9)

he extremum solutions given by Eq. (9) are � = n�. This means that
he pendulum is at rest upright or hanging down unless cos (ωt) = 0.
h Communications 43 (2012) 7–14 9

To better understand the situation, we now turn to approximate
numerical optimization using truncated Fourier series, and revisit
Eq. (9) later.

3. Numerical optimization

Since we are interested in period-1 rotation solutions, we
assume the following form for the solution:

�(t) = ωt + a0 +
N∑

n=1

(an sin(nωt) + bn cos(nωt)). (10)

Thus

�̇(t) = ω +
N∑

n=1

(nωan cos(nωt) − nωbn sin(nωt)). (11)

Using the above representation in Eq. (7), we numerically find the
minimizing solution (i.e., solve for the coefficients a0, ans and bns)
for given ı and ω. The numerical optimization is carried out in MAT-
LAB using the FMINSEARCH routine. As a procedural information,
during each function evaluation step in the optimization routine
the integral of Eq. (7) was approximated by a finite summation over
small time intervals. The function evaluation tolerance parameter
TOLFUN is fixed at 10−10 and TOLX is fixed at 10−12.

We choose four different combinations of excitation strengths
and frequencies such that ω is near the 1:2 resonance where there
is high incidence of seeing period-1 rotations (see Xu et al., 2005).
For these parameter sets, the optimization procedure is carried out
for increasingly large values of N and the results are plotted in Fig. 4.
In Fig. 4 and all further plots of optimal solutions in the paper, we
choose the X-axis to be the non-dimensional time � = ωt/2�. Thus
over one forcing period � ∈ [0, 1]. Fig. 4 suggests that the Fourier
series approximation converges to a piecewise constant solution,
regardless of the specific excitation strength and frequency.

In this limiting piecewise constant solution, the pendulum alter-
nately hangs down or stands upright, for half a period each time,
making rapid (instantaneous) transitions (�-rotations) every time
cos (ωt) = 0; in particular, it is upright when cos (ωt) > 0 and hangs
downwards when cos (ωt) < 0, with �̇ positive at every transition.
The infinite velocity during the transitions is unphysical, and is
a consequence of our not having limited the maximum possible
magnitude of the torque T. In practice, we may wish to make the
transitions as rapid as mechanically feasible. What is important is
that the limiting solution (as indicated by the finite dimensional
approximation) matches the results obtained from the calculus of
variations (Eq. (9)). We now return to the calculus of variations.

4. Variational calculation with a penalty on high velocities

In order to make the solution more realistic, we modify our
objective function such that large velocities are penalized. The
modified objective function is

P = ω

2�

∫ 2�/ω

0

�̈�̇ dt − ω

2�

∫ 2�/ω

0

(1 + ı sin(ωt)) sin(�)�̇ dt

+ ω

4�

∫ 2�/ω

0

��̇2 dt. (12)

where 0 < � � 1 penalizes large velocities in the solution. The Euler
Lagrange equation is
��̈ − ıω cos(ωt) sin(�) = 0. (13)

The above is a singularly perturbed nonlinear Mathieu equation. We
are interested in rotating solutions of the above equation, satisfying
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Fig. 4. Plot showing the results of numerical optimization for various combinations of
approaches a piecewise constant solution immaterial of ı and ω.
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ig. 5. Numerically obtained plots of the minimizing trajectory of Eq. (13) for dif-
erent values of � with ı = − 0.3 and ω = 1.8.

qs. (3) and (4). In this paper, we have not attempted an analytical
reatment of Eq. (13) (see Izmailov et al., 1995, for a linear sys-
em) and instead obtain the minimizing solutions numerically. All
alculations are performed for ı = − 0.3 and ω = 1.8. Solutions were
btained using the BVP4C routine of MATLAB.

Three solutions, for progressively smaller � values, are plotted
n Fig. 5. The approach to the limiting solution is clearly visible.
nterestingly, for larger �, the solution approaches � = ωt + �, which

e take as the best steady-speed solution.

. Damping and the penalty parameter

We found from the previous section that the introduction of a
enalizing term in the objective function yields a smoother opti-
al solution. The penalizing term has, in addition, a useful physical

nterpretation which we clarify here.
Consider the pendulum system of Fig. 3, but with an explic-

tly added torsional viscous damping. The equation of motion after
uitable non-dimensionalization is
¨ + ��̇ − (1 + ı sin(ωt)) sin(�) = T(t), (14)

here � is the viscous damping coefficient. For this system the net
ower output that is extracted by the external torque is given by
ı and ω. It appears that as the number of harmonics, N, increases, the solutions

W = ω

2�

∫ 2�/ω

0

�̈�̇ dt − ω

2�

∫ 2�/ω

0

(1 + ı sin(ωt)) sin(�)�̇ dt

+ ω

2�

∫ 2�/ω

0

��̇2dt. (15)

On comparison of Eqs. (12) and (15), we find that the penalized
objective function indeed corresponds to the work extracted from
the system of Eq. (14), where the damping parameter is � = �/2.
Thus the penalty parameter introduced in Eq. (12) is related to the
damping in the system which penalizes large velocities and yields
a smoother optimal solution.

The introduction of damping, while smoothening the optimal
solution, also dissipates energy. To estimate the optimum work out-
put after losses to damping, we evaluate Eq. (15) for the optimum
solution (obtained as before) for a range of values of the damp-
ing parameter � and for ı = − 0.3 and ω = 1.8. Results are plotted in
Fig. 6.

It is seen from Fig. 6 that for large damping values, no positive
work is extracted. However, for progressively decreasing damp-
ing, we extract useful energy from the system. In particular, for the
considered case of ı = − 0.3 and ω = 1.8, no useful energy extrac-
tion is possible for � > 0.0856. Also, we observe from Fig. 6 that as
the damping progressively decreases (� → 0) the maximum energy
output starts approaching a limiting value. For the plotted case of
ı = − 0.3 and ω = 1.8, this limiting value is 0.3438, which equals the
work obtained from the piecewise-constant solution, as discussed
next.

6. Work extracted
Here, we compute and compare the maximum work that can
be extracted from the undamped system for the three cases: uni-
form rotation, piecewise constant solution, and the Fourier series
approximation to the piecewise constant solution. We recall that
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ig. 6. A plot of the power input to the pendulum system in the presence of dampi

he average power extracted per cycle (see Eq. (8)) is the negative
f the work done by the external torque:

= ω

2�

∫ 2�/ω

0

(1 + ı sin(ωt))�̇ sin(�) dt. (16)

For the uniform rotation solution, � = ωt + �. Substituting for � in
q. (16), we obtain the maximum work extracted for the uniform
otation case as

P = ωı

2
. (17)

For the piecewise constant solution, the solution stays constant
xcept near t = �/2ω, and t = 3�/2ω. In the boundary layer around
= �/2ω, sin (ωt) ≈ 1, and in the boundary layer (or rapid transition
egion) around t = 3�/2ω, sin (ωt) ≈ − 1. Thus we have

≈ ω

2�

∫ (�/2ω)+˛

(�/2ω)−˛

(1 + ı)�̇ sin(�) dt

+ ω

2�

∫ (3�/2ω)+˛

(3�/2ω)−˛

(1 − ı)�̇ sin(�) dt, (18)

herein we can take ˛ → 0 as � → 0, and the quantity on the right
and side of Eq. (18) approaches the maximum work extracted from
he limiting piecewise constant solution. Thus, for the piecewise
onstant solution, we obtain

P = 2ωı

�
, (19)

hich exceeds the amount of Eq. (17) by 27.32%.

We also obtain the maximum work output for the Fourier series

pproximation of Eqs. (10) and (11) from the numerical optimiza-
ion routine. For the considered case of ı = − 0.3 and ω = 1.8, we
resent the results for these three cases in Table 1. One can verify

able 1
omparison of maximum power extracted per cycle from the cases of uniform
otation, piecewise constant rotation, and Fourier series approximation.

Case Maximum work output

Uniform rotation 0.2700
Fourier series with 24 terms 0.3424
Piecewise constant solution 0.3438
te that negative power input indicated positive power output from the system).

that even a one-harmonic correction to the constant speed solu-
tion can give a power output increase of about 22%, with relatively
gentler accelerations. However, there are small velocity reversals
within the cycle.

7. Effects of non-harmonic excitation

7.1. Smooth periodic, but non-harmonic, excitation

Until now, we have focused on the case when the base excita-
tion is purely harmonic. It is interesting, however, to examine the
case when the excitation (base acceleration) is a general periodic
function q(t) rather than harmonic, and determine the nature of the
resulting optimum solution and the corresponding optimum work
output. Thus our governing equation becomes

�̈ − (1 + q(t)) sin(�) = T(t), (20)

where q(t) is a periodic function such that

q
(

t + 2�

ω

)
= q(t).

The Euler–Lagrange equation governing the optimal solution
becomes

q̇(t) sin(�) = 0, (21)

and the corresponding equation obtained after penalizing large
velocities is

��̈ − q̇(t) sin(�) = 0. (22)

From Eq. (21) it is clear that in the optimal solution � = 0 or �
when q̇ /= 0. However, since we also require the pendulum to com-
plete a revolution in one period of the forcing, � changes at the
instants when q̇ = 0. We will examine these effects first for a peri-
odic excitation with two harmonics, and then consider the slightly
complicated case of square-wave base excitation. More specifically,
let

q(t) = ı
(

sin(ωt) + 1
4

sin(2ωt)
)

, (23)
and for this choice of q(t) and for ω = 1.8 and ı = − 0.3, q̇ vanishes at
the normalized time instants ωt1/2� = 0.1903 and ωt2/2� = 0.8096.
For this choice of q(t), we compute the optimal solution through our
Fourier-series based numerical optimization routine and plot the
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Fig. 7. Left: Plot showing the results of numerical optimization for the case with the excitation as in Eq. (23) with ı = − 0.3 and ω = 1.8. It appears that as the number of
harmonics, N, increases, the solutions approach a piecewise constant solution, and the t
when q̇ = 0 (see text for details). Right: Numerically obtained plots of the minimizing tr
solution to the piecewise constant solution is clear. The transition points involving rapid

Table 2
Comparison of maximum power extracted per cycle, for non-harmonic excitation
of Eq. (23) with ı = − 0.3 and ω = 1.8.

Case Maximum work output

Uniform rotation 0.2700
Fourier series with 30 terms 0.3763
Piecewise constant solution 0.3784
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esults for numbers of retained harmonics in Fig. 7 (left). We also
ompute the optimal solution for the penalty-based formulation of
q. (22), for � = 1e−4 and plot the result in Fig. 7 (right).

Finally, we compute the optimum work extracted per cycle from
he optimum piecewise constant solution in this case and compare
he same with the work obtained from a uniform rotation solution.
t can be shown that (following the calculations outlined in the
revious section), if t1 and t2 are the instants when q̇ vanishes, then
he optimum work extracted is given by

P = ωı

�
[sin(ωt2) − sin(ωt1)] + ωı

4�
[sin(2ωt2) − sin(2ωt1)] . (24)

he work output from the uniform rotation solution � = ωt + � is still
iven by Eq. (17). In Table 2 we give a comparison of the work output
rom the uniform rotation solution, the piecewise constant solu-
ion as well as from the approximate optimum solution through
ur truncated Fourier series optimization routine in Table 2. It is
een that in this case the optimal work output is approximately
0% greater than that obtained from uniform rotation solution. We
bserved that in this case of excitation with two sinusoids, the
ptimal work output in relation to the uniform rotation solution is
igher than the pure harmonic case presented earlier. This points

o an interesting academic question of what base excitation results
n maximum extraction, which we leave to future work.

ig. 8. Left: Representative unit square wave excitation for explanation purposes. Right:
he text and its approximations by hyperbolic tangent functions over one period of excita
ime instants during which � undergoes rapid changes correspond to the instants
ajectory of Eq. (22) for � = 1e−4 and with ı = − 0.3 and ω = 1.8. The closeness of the
changes in � coincide with the instants during which q̇ vanishes.

7.2. Square wave excitation

We finally consider the case of a square wave acceleration
applied as a parametric base excitation to the pendulum. The dis-
continuous nature of the square wave excitation leads to some
subtleties which we explain here. For ease of explanation, we plot a
unit square wave excitation in Fig. 8 (left). It is clear that q̇ = 0 for all
instants except the transition instants during which q̇ is not defined
(or infinitely large). Proceeding with the Euler–Lagrange equation
as before (and temporarily ignoring the non-differentiability of q(t)
during the transition instants) we get

q̇(t) sin(�) = 0. (25)

Since q̇ = 0 for all instants where defined, it is clear that the above
equation is identically satisfied for almost all time. There are no
restrictions on the optimal solution for most of the duration of
the forcing cycle. At the instants when q̇ grows infinitely large, the
Euler–Lagrange equation is still satisfied if sin (�) = 0. Thus the opti-
mal solution for the case of square wave excitation is non-unique
with the constraint that all the possible solutions have to satisfy
sin (�) = 0 during the instants when the excitation reverses its sign.

To verify the above conclusions, we proceed with our numer-
ical optimization routine. However we first approximate the
square wave excitation by a smooth approximation. Specifically we
approximate the square wave excitation over one period using the
following form

H(t) ≈ tanh

[
t − (2�/ω)

˛

]
− tanh

[
t − (�/ω)

˛

]

+ 1
tanh

[
t
]

− 1
tanh

[
− t

]
, (26)
square-wave and the approximation as specified in Eq. (26) are
plotted in Fig. 8 (right) for decreasing values of ˛. It is seen that

Unit square wave excitation with an angular frequency of ω = 1.8 as considered in
tion.
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Fig. 9. Non-unique optimal solutions obtained from the numerical optimization
routine for the case of square wave excitation with ı = − 0.3 and ω = 1.8. Square
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Fig. 10. Optimum solutions obtained from the penalty formulation Eq. (27) for the
case of square wave excitation with � = 0.001, ı = − 0.3 and ω = 1.8. Square wave exci-
tation is approximated using Eq. (26), and solutions obtained for various values of ˛
are plotted. Solutions are approaching a uniform rotation solution passing through
(0.5, 2�).

Table 3
Comparison of maximum power extracted per cycle, for the case of square wave
excitation with ı = − 0.3 and ω = 1.8, from the cases of uniform rotation, and the solu-
tions from numerical optimization and by direct evaluation of the work integrals. In
the case of square wave excitation, as explained in the text, there is non-uniqueness
in the optimal solutions and uniform rotation is also a valid optimal solution. Thus
the work output in this case is identical for the various cases.

Case Maximum work output

Uniform rotation 0.3438
ave excitation is approximated using Eq. (26) with ˛ = 0.001. All the solutions pass
hrough (0.5, 2�) such that sin (�) = 0 at the instant when the square wave changes
ign.

= 0.001 approximates the original square wave very well. We
ow proceed with the numerical optimization procedure. All the
imulations are done for N = 40 harmonics, with the square wave
xcitation over one period being approximated according to Eq.
26) and the control parameter fixed at ˛ = 0.001. As discussed ear-
ier, the constant nature of the square wave excitation during most
f the time period results in non-unique solutions for optimum
ork output. Our numerical optimization routine returned essen-

ially identical (up to 6 decimal places) work output for each of
hese solutions. Three such solutions obtained from the numerical
ptimization routine are plotted in Fig. 9 where the computed solu-
ions differ in the normalized time intervals [0, 0.5) and [0.5, 1.0).
hese intervals correspond to the constant values of the excitation
i.e. q̇ = 0). At � = 0.5, the excitation changes rapidly (q̇ /= 0) and to
atisfy Eq. (25) at this instant the solutions attain � = 2� such that
in (�) = 0.

The variational equation for the optimum solution on penalizing
arge velocities reads as

�̈ − q̇(t) sin(�) = 0. (27)

or the square wave case in the normalized time intervals [0, 0.5)
nd [0.5, 1.0), Eq. (27) becomes

�̈ = 0. (28)

he solution to the above represents a uniform rotation of the form

(t) = ωt + �. (29)

he uniform rotation solution is such that � = 2� at the instant
= �/ω. Note that the above solution is valid for � /= 0. Thus the
ntroduction of penalization has removed the non-uniqueness and
hosen the uniform rotation solution among all the candidates. To
onfirm these observations, the boundary problem associated with
q. (27) is solved, again approximating the square wave using the
pproximation as in Eq. (26). The results from the penalty formula-
ion for progressively decreasing values of ˛ are plotted in Fig. 10.
ll the results are computed with � = 0.001, ı = − 0.3 and ω = 1.8. The
olutions are seen to approach the uniform rotation solution which
s the straight line passing through the point (0.5, 2).

The optimum work output for the square wave excitation case
s now computed using the uniform rotation solution. We have for
he optimum work output per cycle
= ω

2�

∫ 2�/ω

0

(1 + ıq(t))�̇ sin(�) dt. (30)
Fourier series with 40 terms 0.3438
Direct evaluation of Eq. (32) 0.3438

For the square wave case, using the uniform rotation solution as the
optimal solution (for simplicity, although all non-unique solutions
yield essentially the same answer), we have

P = − ω2

2�

∫ �/ω

0

(1 + ı) sin(ωt) dt − ω2

2�

∫ 2�/ω

�/ω

(1 − ı) sin(ωt)dt,

(31)

whereby

P = 2ωı

�
. (32)

For ı = − 0.3 and ω = 1.8, the optimum work extracted per cycle for
the uniform rotation solution, from the various non-unique solu-
tions given by the optimization routine, and from Eq. (32) are given
in Table 3. It is seen in this case that the work output from the uni-
form rotation solution is identical to that obtained from the other
non-unique optimal solutions.

Thus from the studies with two cases of excitation considered
in this section, we conclude that the gain in the work output as
given by the optimal solution over the uniform rotation solution is
dependent on the nature of excitation.

8. Conclusions

We have sought, and found, the optimal angular motion of
an actively controlled vertically and periodically driven pendu-
lum with the aim of maximum work extraction. The optimal
solution for typical base excitation and in the undamped

limit, somewhat surprisingly, involves periods of vertical dwell
interrupted by instantaneous half-rotations. The optimal tra-
jectory for a harmonic base excitation gives a power output
gain of about 27%. Somewhat smoother approximations to
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he optimal trajectory give almost as good improvements in
ower output. Beyond some maximal level of viscous damp-

ng for any given forcing parameters, energy extraction is not
ossible.

Changing the nature of base excitation can change the net out-
ut. Non-zero sized intervals of constant base excitation lead to
on-uniqueness in the optimal motion but, in the situation studied,
ot in the optimal power output.

This has been a purely theoretical study, and practical realization
f these motions in actual wave-energy extraction devices may be
aken up in future work.
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