
CHAPTER – I

INTRODUCTION & LITERATURE REVIEW

INTRODUCTION:

Nowadays, the culture of hybrid, all-electronic S.M.A.R.T. and connected autonomous vehicles is on an ever-peaking

demand-curve. This also means an extension of the vehicle-security exploitations increment we hear about through

daily media, about theft, hijacking or simply vandalism. Such an overwhelming need for an automobiles’ security and

longevity can only be met by the far-reaching, impactful and tailored technology, suited for the respective scenario.

Realizing such endeavors could be only possible owing to the Open Source (F.L.O.S.S.) collective, and thence

garnered resources and source codes.

On account of solving this research conquest, such an approach has been applied, such that in order to be able to cater

the needs of almost everyone with a direct contact with a vehicle, or any automobile, public, personal or even private

can be realized at the minimal costs of upgradation.

We, through the medium of this project, would aspire to address such vehicle optimization adversing security related

tradeoffs, and conclusively suggest remedies.

1

A wide variety of scholarly articles have been referenced to survey the current as well as the previously outdated inter

and intra vehicular and network communication and signaling technology. In order to maintain standard universality,

all implementations are based using Linux kernel 4.1.

https://mee499.github.io/MEE499R01V007/req002.html - literature-review

Description Remarks

List of Sampled
Technology
Protocols

1: Contoller Area Network (C.A.N.)

2: MAC layer Addressing

3: IEEE 802.11 (b.g.n/a/c)

https://mee499.github.io/MEE499R01V007/
req002.html - list-of-sampled-technology-protocols

List of Sampled
Technology
Hardware

1: Adafruit’s Arduino UNO

2: Raspberry Pi’s ‘Model B+’

3: Reannaisance’s PorterBoard 2

4: Orange Pi’s IoT+ Embedded

5: Stock Daragonboard410c (QEMU Emulated-VM)

https://mee499.github.io/MEE499R01V007/
req003.html - list-of-sampled-technology-hardware

List of Sampled
Software
Releases

1: Automotive Grade Linux (A.G.L., Linux Kernel 3.9)

2: Tyzen Operating System (UNIX Kernel 4.11)

3: Qt (For the Graphical Release, Applications)

4: Ubuntu IoT Core (+2.3.26)

https://mee499.github.io/MEE499R01V007/
req004.html - list-of-sampled-software-releases

List of Sampled
Libraries and
Modules:

1: AGL

1.1: agl-demo

1.2: agl-appfw-smack

1.3: agl-devel

1.4: agl-netboot

2: UNIX

2.1: gawk

2.2: wget

2.3: git-core

2.4: diffstat

2.5: texinfo

2.6: chrpath

2.7: cpip

2.8: socat

https://mee499.github.io/MEE499R01V007/
req004.html - list-of-sampled-libraries-and-modules

2

3: libdll

3.1: libsdl.2-dev

3.2: gcc-multilib

3.3: libhvac

3.4 libssh-dev

List of Sampled
Prototyping
(cMake)
Softwares:

1: Reading/Writing a PCB (.gerber format)

2: C, PyPi (Writing Functional Code Snippets)

3: make, build (C-lang)

4: bash (UNIX Scripting)

https://mee499.github.io/MEE499R01V007/
req006.html - list-of-sampled-authoring-softwares

3

Most of the projects in IV, V2V and V2I use the standard IEEE 802.11 protocol for communication. But also

GSM, UMTS, GPRS protocols are used in some of these projects. Generally WSNs (Wireless Sensor

Networks) are deployed ineffectively and thus “platoonong” is inefficient, since the convoluted network is not

‘big’ enough in terms of the ‘no. of nodes’ present in the V2V (Vehicle-to-Vehicle) or V2I(Vehicle-to-

Infrastructure) network.

Traditionally, IEE standards like the Basic layers have been employed tor the information transmission.

Routing inside a low power area network (LoWPAN) might be considered a challenge, as the RPL has to work

over lossy radio links, with battery-powered nodes, multih-op mesh topologies and frecuent topology changes.

To give a solution several working groups are giving support to the RFC’s for this protocol.

One of them is the routing over lowpan and lossy networks (ROLL) who is in charge of routing tasks.

Meanwhile the “6LoWPAN” is trying to bring the new IPv6 addressing system to these resource-constrained

devices.

We try an approach to link the various specific nodes by utilizing the local loopback (lo) to define the real-

time attributes of the vehicle by getting the metadata locally, thus reducing latency and speeding up reactance

and appreciating the autonomous vehicles susceptibility to its stimuli.

4

In our design, we have tried to predict the points of failure in traditionally applied approaches of such

technology from a signal strength penetration and security (encryption or sniff-proof))testing point of view

for application in areal world scenarios and conclude with instantly applicable remedies via pull requests to

the FOSS code repositories.

Radio waves and infrared have been studied to give medium support to IVCs. The radio waves include micro,

millimeter and VHF waves. The communication with millimeter waves and infrared are usually directional, while

VHF is used for broadcast.

The typical radio bandwidth used in IVC is 5.9 GHz in US, 5.8 GHz in Japan and 5.8 GHz in Europe. The FleetNet

project chose ULTRA TDD due to the availability of the unlicensed frequency band 2010-2020 MHz in Europe. Most

projects, however, have adopted the use of infrared (CarTALK, COOPER, JSK, PA, etc.).

Utilizing a decentralized and thus peer-to-peer node approach, we may link any two nodes in vicinity of each other in

a lot quicker manner, than to rely on repetitively transmitted feed data. Our approach helps improve precision in our

model considerably and thus also contributes to the lowering down of the time complexity to adjourn the real-time

attributes of a neighboring vehicle.

There are two approaches in developing MAC for IVCs. One is using IEEE 802.11 as a radio interface, while the

other consists on extended 3G technology, such as CDMA for distributed access.

(Fig. 3) : Vehicle to Infrastructure Communication (schematic)

Both of them have to be modified and adapted to provide an efficient solution for IVCs. The only advantage of

using IEEE 802.11 is the inherited support for distributed coordination in ad-hoc mode. On the other hand, 3G

extensions present high granularity for data transmission

5

Further investigations leads to some specifications already presents like the one from Jaguar Land Rover [VISS], for

Vehicule Information Service Specification and another from Volkwagen AG named [ViWi], stand for Volkwagen

Infotainment Web Interface. Each ones has their differences and provides different approach serving the same goal:

VISS ViWi

Filtering on node (not possible on several nodes or branches) Describe a protocol

Access restrictions to signals Ability to specify custom signals

Use high level development languages RESTful HTTP calls

One big Server that handle requests Stateless

Filtering Filtering, sorting

Static signals tree not extensible [VSS] Use JSON objects to communicate

Use of AMB ? Identification of resources may be a bit heavy going using UUID

Use of Websocket API

About [VISS] specification, the major problem comes from the fact that signals are specified under the [VSS],

Vehicle Signal Specification to make a full inventory of all signals existing for each car is more important, each

evolution in signals must be mostly don't comply with the [VSS]. VISS doesn't seems to be an valuable way to handle

car's signals, a big component that responds requests, use of Automotive Message Broker that use DBus is a

performance problem. Fujitsu Ten recent study[1] highlights that processor can't handle an heavy load on CAN bus

and that Low level binding adopted for AGL is about 10 times[2] less impact on performance.

6

PROGRAM OBJECTIVES:

To come up with a neat-networking protocol schema to address inefficient hop-on /ad-hoc communication

propogation delays, possibly trying to implement in a decentralized contract.

To be able to successfully reproduce the hardware based real-time implementation of the AGL release on an ARM

based development board.

To provide an future roadmap for Non-hybrid cum Hybrid on-road network integration in a cheap (feasible),

environment-friendly (sustainanble) and energy-efficient (if not, utilitarian) by means of a snap-on dashboard

powered by a simple smartphones’ sensors, transmitters and transducers.

To demonstrate a successful implementation of AGL (improvised fork) during the final review.

Others

 Design Elements included:

Engineering Standards Prototype and Fabrication

 Design Analysis Experimentation

Modeling and Simulation Software Development

Realistic Constraints to be addressed :

Economic Ethical

Environmental Safety

Social Health

Manufacturability

 Political Sustainability

7

METHODOLOGY AND EXPERIMENTAL PROCEDURE

2.1 Methodology

The AGL is first ported to a VM with a usual DebianOS base kernel.

Next, the images are downloaded and flashed onto a SDHCeMMC Memory Card.

Third, the auxiliary input and output peripherals are serially connected to the used Raspberry Pi, or UNO module.

2.2 Experimental Procedure

Hardware Requirements

 Dragonboard410c

 96Boards Compliant Power Supply

 Linksprite 96Boards Touch Screen

 Sensors Mezzanine

 Audio Mezzanine(Required if using External Arduino)

 Arduino Uno(Optional)

 DC motor with Propellers

 L298 Motor Driver

 5mm LED's

 330 ohm resistors

 Connecting (patch) wires

Arduino

8

Controlling Fan Speed and LED intensity are handled by the Arduino. Sensors Mezzanine has an ATMega328

microcontroller compatible with Arduino Uno. We use that or any external Arduino Uno for PWM control.

In case of using Sensors Mezzanine, the sketch can be uploaded by using Dragonboard410c itself..

If using Sensors Mezzanine, please follow the below steps on Dragonboard410c running Debian otherwise use

Arduino IDE on the host system for programming.

$ cd ~/Documents

$ git clone https://github.com/96boards-projects/agl-demo.git

$ cd agl-demo/arduino/hvac

Now open the hvac.ino using Arduino IDE and flash it onto the Sensors Mezzanine or Arduino Uno.

Dragonboard410c

Execution environment: Host PC

Software Dependencies:

$ sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib \

 build-essential chrpath socat libsdl1.2-dev xterm cpio curl

9

Loading AGL Source Code

AGL uses repo tool for maintaining repositories. We need to download the source on the host machine and cross

compile it for Dragonboard410c.

$ export AGL_TOP=$HOME/workspace_agl

$ mkdir -p $AGL_TOP

$ mkdir -p ~/bin

$ export PATH=~/bin:$PATH

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo

$ chmod a+x ~/bin/repo

Next, checkout the stable branch of AGL.

$ cd $AGL_TOP

$ repo init -b dab -m dab_4.0.2.xml -u https://gerrit.automotivelinux.org/gerrit/AGL/AGL-repo

$ repo sync

10

Building AGL

Now, to build the agl-demo-platform for Dragonboard410c.

$ source meta-agl/scripts/aglsetup.sh -m dragonboard-410c agl-demo agl-appfw-smack agl-devel agl-netboot

Now to move to the directory:

$ cd agl-demo

Copying the custom HVAC recipie to AGL source:

$ cp hvac_git.bb $(AGL_TOP)/meta-agl-demo/recipes-demo-hmi/hvac/hvac_git.bb

Executing bitbake command by moving to the build directory of AGL source.

$ cd $(AGL_TOP)/build

$ bitbake agl-demo-platform

11

Flashing AGL onto Dragonboard410c

Once the build has been completed, we have to flash the boot and rootfs images onto Dragonboard410c. Now, boot

Dragonboard into fastboot mode by following the instructions here. Then follow the below instructions to flash AGL

onto Dragonboard410c.

$ cd $AGL_TOP/build/tmp/deploy/images/dragonboard-410c

$ sudo fastboot flash boot boot-dragonboard-410c.img

$ sudo fastboot flash rootfs agl-demo-platform-dragonboard-410c.ext4

 Hardware Setup (Schematic Protocol Componential to execute HVAC).

Tthe Dragonboard410c is powered off

Connected DC motor and LEDs to Arduino as per above schematic

Connected LCD to Dragonboard410c via HDMI cable for display and Micro USB cable for touch input

Powered on 96Boards CE with compatible power supply

Dragonboard410c should now boot into AGL and homescreen should be visible.

12

 HVAC & Utilities

Execution environment: Dragonboard410c

Navigated to the HVAC application from the Homescreen.

 To control the Fan speed, change the position of slider at top.

 To control the LED intensities, change the values of L/R temperatures by dragging up the LO box.Turned off

power by using the following:

$ sudo cd ..

$ poweroff --no-latch

Fig

. 3 An Example in cloud run: Vehicle Occupancy Flag

13

Protocol Parameter Development

Note*: About Network Layer based communication:

* Realistic Constraints to be
addressed.

Almost all routing protocols used by the different IVC projects are position-based. The components of such

architecture are:

 Communication buses : Consolidated EEs (and their applications) need to interact and communicate with each other.

Two types of communication bus are supported by the architecture:

.

Critical communication bus: it is restricted to Critical Execution Environments (CEEs) only. The

communication here has to address important requirements of safety and security.

 Non critical communication bus: it is open to all the EEs available in the system.It has to address high

performance and security requirements. In addition, existing MAC ad hoc protocols could be directly applied. But if

14

an optimal performance is desired taking into account the linear nature of the networks seen in section III,

modification of the existing routing protocols must be performed.

In addition, the features most of vehicles offer nowadays makes possible to get position information via GPS

or GIS, very useful for routing.

.

The protocol uses a forwarding scheme which avoids beacons for impactful transmission and effective

sensing.

Execution Environments (EEs):

These are silos that run concurrently on the system and enable the execution of different applications.

Different types of EE are supported: certified, non certified, trusted, non trusted, open source, proprietary.

Some of them are classified as Critical Execution Environments (CEEs), because their applications have an

impact of the safety and security of the system. The others are considered Non Critical Execution

Environments (NCEEs). They could be implemented as binary applications, combination of a set of libraries

with the related application, or full featured operating systems, etc.

15

Applied Ad-hoc Approach to Network

We employ a Virtual Network layer based on-board computation cum signaling:

.

(Fig 4:) Hybrid or Modern Day Infrastructure

We aspire to prototype a modular approach to convert existing infrastructure of sensors and wireless

telecommunication devices, and perhaps even provide pointers on an improved protocol fabrication, which could be

deployed at scale, feasibly.

16

CHAPTER –III

RESULTS AND DISCUSSIONS

PHASE I

3.1 Implementational Details:

Successfully studied the architecture of a PCB (printed) board.

Gained a deep understanding of remote-sensing and GIS in application-layer deployment.

Ported AGL unto raspberryPi and successfully emulated on a HDMI-connected monitor.

Pull Request was successfully merged with the source at git.automotivelinux.com.

Cost and Capacity based market economic analysis.

3.2 WORK OBJECTIVES ACCOMPLISHED:

Came up with a neat-networking protocol schema to address inefficient hop-on /ad-hoc communication

propagation delays, possibly trying to implement in a decentralized contract.

Were able to successfully reproduce the hardware based real-time implementation of the AGL release on an

ARM based development board.

To provide an future roadmap for Non-hybrid cum Hybrid on-road network integration in a cheap (feasible),

environment-friendly (sustainable) and energy-efficient (if not, utilitarian) by means of a snap-on dashboard

powered by a simple smartphones’ sensors, transmitters and transducers.

To demonstrate a successful implementation of AGL (improvised fork) during the final review.

17

LAYOUT OF NODES

3.1 Networking Approach:

The independent vehicles are coupled within a WLAN region, with each and every client being a separate node.

t=-n t=-1 t=0

 t=1
… t=n+1.

Fig 5 (Schematic peer-to-peer approach)

The intrinsic chararteristics of the protocol specifically aim to reducy latency within the network at a controller level

adminstrative scope.

(Fig. 6)

Figure showing networked nodes at a schematic note. Each

node is identified with a unique tag, or roll no.

Each Autonomous Node Is Indexexed.viz.0x00-0x05.

Current Figure Shows A Total Of 6 Openly Connected

Communication Channels.

18

It is serialized in such a fashion that no two nodes could have the same unique identifier. Hence, a specific roll is

given to each member node connected to the peer-to-peer network.

PHASE III

CONCLUSIONS

The networking was successfully deployed in real-time on a two-wheeler, and the Raspberry-Pi microcontroller was

used to process the network traffic throughput over a locally established WLAN using an ad-hoc approach.

Figure showing traditional approach.

Client-to-Server type connection

Time Complexity = O(N)

The benefit of using such an approach diminishes the requirement to have communication channels opened all over

the so-called grid network having all clients simultaneously connected at a given point in time.

 Using a protocol with ad-hoc approach enables us to avoid the slack (latency) caused due to congestion prevalence.

Thus, a time complexity of O(N) is simly transformed into a time complexity of O(ln(N)), due to connection

channels being only opened with the other clients in the domain of the end-client’s fidelity domain, i.e. the currently

(time-dependent) region of local reactance to a received wireless signal.

19

FORMULATION

For high-speed internetworking, i.e. in our case 36Km/h (10m/s), we found a connection latency of 0.0014 bauds/m-

sec, with boundary at roughly 20m-25m.

Figure showing traditional approach.

Client-to-Client type connection

Time Complexity = O(ln(N))

(Fig. 8) Client-to-client, one to one approach

Rather than establishing a direct client-to-server connection, our approach uses a peer-to-peer, ad-hoc approach to

route the throughput in a region temporally local to the client device.

The NMEA GPS agent listens to a NMEA server that produces GPS data. The GPS data

received are made available to clients of the signaling agent.

Clients can query the last known GPS position at any time using the “get” method.

20

Example of answer to the “gps/get” query:

{

"response": {

"type":"WGS84",

"time":76994000,

"latitude":47.410213545797532,

"longitude":357.04750632886282,

"speed":6.7083555549760003

},

"jtype":"afb-reply",

"request":{"status":"success"}

}

When the client queries the last known position, it can specify the type of the position it requires. The NMEA GPS

signaling agent offers four different types:

Note that the agent does not send the data parts of the position that are missing.

 In the returned example, the data for altitude and track (heading) are missing.

A client can also subscribe to be periodically notified of the position. The subscription can specify the type of

position expected and the period in milliseconds between two notifications.

21

Example of answer to the “gps/subscribe” subscription query:

{

"response":{"name":"GPS","id":1},

"jtype":"afb-reply",

"request":{"status":"success"}

}

This reply includes the event name (“GPS”) and a numeric id that must be used whenunsubscribing.Notifications of

the position are events.

Example of received event:

{

"event":"gps/GPS",

"data": {

"type":"WGS84",

"time":78021000,

"latitude":47.361904282981413,
"longitude":357.06160208259365,

"speed":7.119911110496

},

"jtype":"afb-event"

}

A client can unsubscribe to an event using the numeric id received during Subscription.

/*
* Get the last known position
* parameter of the get are:
* type: string: the type of position expected (defaults to "WGS84" if not present)
* returns the position
* The valid types are:
* +==========+=======================+=======+==========+=======+
* | type | longitude & latitude | speed | altitude | track |
* +==========+=======================+=======+==========+=======+
* | WGS84 | degre | m/s | | |
* +----------+-----------------------+-------+ | |
* | DMS.km/h | | km/h | | |
* +----------+ +-------+ meter | degre |
* | DMS.mph | deg°min'sec"X | mph | | |
* +----------+ +-------+ | |
* | DMS.kn | | kn | | |
* +==========+=======================+=======+==========+=======+
*/

Furthermore quality development is still required to network autonomous vehicles going at a greater speed, whereas,

for applications on vehicles like electric-bikes, or even simple bicycles is currently technically feasible.The agent

implements basic logic for delivering events: when a new position arrives to the NMEA sockets, the clients whose

22

period is expired receive the notification. So theperiod of subscription is the minimal period between two

notifications.

(Fig 9) : Signal Passing as bypassed within the subnet (local).

These strengths increased significantly with reduction in vehicle speed, and as a consequence, reduced latency,

providing a faster-to-establish communication link, rather than a traditional fast (e.g. Lifi) link, with a small delay,

nonetheless a trade off in quality assurance of the success in link establishment.

23

INFERENCE

Fig.1 Ad-hoc approach.

Fig.2 Real-time Routing

O(ln(N)) time complexity

Client-to-Client type connection

(Fig. 10) Real-Time Implementation and Scaling approach

The Automotive Grade Linux system when implemented hands-on with an ad-hoc approach drew better results in

terms of connection stability, ease-of-user-setup and higher reactance in slow mobility environments, which could be

seen as far more reliable over any GSM or Client/Server networking approach.

Finally we add an configuration file to route public keys and attributes

via { global: afbBindingV1*; local: *; };

local schematic binding over the ad-hoc type network connection.

This protocol benefits the end-node applications on the client device such as distance-to-drop forecasting, local

neighbor detection, faster network resource sharing, improved auto-pilot torque prediction model, among other

functions inbuilt to the AGL core.

24

Gantt (Progression / Commits) chart

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Pre-Activity # # #

Literature # # #

0th Review #

Lit. Survey # # # # # #

Sampling # # # # #

1st Review #

Re-Editting ! ! !

Experiments ! ! ! ! ! ! ! !

Anlysis ! ! ! !

Thesis ! ! ! ! ! !

2 nd Review !

Submission !

Acceptence ! ! !

Result #

! := done (submission)

:= done (review)

Note:

Commit history as taken from https://github.com/MEE499/

Code frequency history as taken from https://github.com//14BME0133/

Pull Request was successfully merged with the Automotive Grade Linux repository hosted (public::master@master).

25

REFERENCES

Books, Whitepapers and Journal Publications referenced through the literature are cited below:

 [1] Jawhar, I., Mohamed, N., Zhang, L.: Inter-Vehicular Communication Systems, Protocols and Middleware.
pp. 1–3 (2010)

[2] Yang, X., Liu, J., Zhao, F., Vaidya N. H.: A Vehicle-to-Vehicle Communication Protocol for Cooperative
Collision Warning. pp 1–14. (2003)

[3] Thangavelu, A., Saravanan, K. Rameshbabu, K.: A Middleware Architectural Framework for Vehicular
Safety over VANET (In-VANET).pp 277–282 (2009)

[4] Luo, J., Hubaux, J.: A survey of Inter-Vehicle Communication. pp 1–12. (2004)

[5] Böhm, A.: State-of-the-art in networks aspect for Inter-Vehicle communication. pp 1–25. (2007)

[6] Keskin, U.: In-Vehicle Communication Networks: A literature Survey. pp 14 (2009).

[7] Nekovee., M.: Quantifying Performance Requirements of Vehicle-to-Vehicle Communication Protocols for
Rear-end Collision Avoidance. pp. (2008)

[8] Inter-Vehicular Communication Systems, Daniel López García, Danckelmannstrasse 46/47 Berlin.

26

SOURCES AND CODE SNIPS:

https://MEE499.github.io/

https://14BME0133.github.io/MEE499/

https://git.automotivelinux.com

https://MEE499.github.io/agl-7782-0002-0009/

https://github.com/14BME0133/MEE499/Wiki/doc

http://iot.bzh/download/public/2018/Signaling/AGL-Signaling_Feb18.pdfs

https://github.com/iotbzh/af-gps-binding/blob/master/src/af-gps-binding.c

https://github.com/mee499/a7952_0x02.pptx

https://github.com/mee499/a7952_0x02.pptx

27

