ABSTRACT:

A novel approach to tackle various inefficiencies of the modern day Vehicle-to-Vehicle communication technology, specifically the modern-day implementation using the Automotive-Grade Linux.

The project begins with sampling the actual hardware and software deployed by the leading manufacturers and industry, highlighting use-cases like the Toyota Prius, Tesla Model S, and Reva employing an ECU approach, and concludes with delivering optimizational remedies.

Keywords:

Automotive Communication Networks; Decentralized Communications; In-Vehicle Networking; Hybrid Platooning; S.M.A.R.T. Automobile Clustering;

TABLE OF CONTENTS

CHAPTER NO.	DESCRIPTION	PG. NO	
	ABSTRACT	i	
	List of Figures	ii	
	List of Abbreviations	iii	
	List of figures		
Chapter – I	INTRODUCTION AND LITERATURE REVIEW		
	1.1 Introduction	1	
	12 Literature Review		
	1.3 Knowledge Gained from Literature		
	1.4 Gaps in the Literature		
	1.5 Objectives		
Chapter - II	METHODOLOGY & EXPERIMENTAL PROCEDURE		
	2.1 Methodology		
	2.2 Design Elements Included		
	2.3 Realistic Constraints to be addressed		
Chapter - III	RESULTS AND DISCUSSION		
	3.1 Conclusion		
	3.2 Work Done so far		
	3.3 Objectives Accomplished		
	3.3 Gantt Chart		
	3.4 Day-to-Day Activity		
	REFERENCES		
	SOURCES AND CODE SNIPPETS		

LIST OF FIGURES

Figure No.	Title	Page No.	
Fig. 1	Vehicle to Infrastructure Communication,		
	(schematic)		
Fig. 2	Schematic Protocol Componential to execute HVAC		
Fig. 3	An Example in cloud run: Vehicle Occupancy Flag		
Fig. 4	Hybrid or Modern Day Infrastructure		
Fig. 5	Schematic peer-to-peer approach		
Fig. 6	Ad-hoc networked nodes		
Fig. 7	Client-to-Server type connection		
Fig. 8	Client-to-Client type connection		
Fig. 9	Signal Messaging Distributed Architecture		
Fig. 10	Real-Time Implementation and Scaling approach		

LIST OF ABBREVIATIONS

S. No.	Abbreviated Form	Long Description.
	CAN	Controller Area Network
	AGL	Automotive Grade Linux
	V	Vehicle
	N	Node
	V2V	Vehicle to Vehicle
	ECU	Electronic-Engine Control Unit
	O.S.S.	Open Source Software
	R.O.L.L.	Routing over Low PAN & Lossy Networks
	VHF	Very High Frequency
	VM	Virtual Machine
	HVAC	High Voltage A/C
	GIS/GPS	Global/Geospatial Information/Positioning System