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CFD Overview

Fluid 
mechanics

Computer 
science

Numerical 
analysis

CFD

 Lots of university offer courses on CFD and it is an active
area of research

 Number of software packages available (e.g. Ansys Fluent)

 Vast literature available on numerical methods for fluid
mechanics.

 Widely accepted as a design tool by industrial users

 Even with incompressible flow – impossible to cover
everything in single work.

 Based on the speed, the fluid flow is broadly classified into
creeping, laminar and turbulent flows.

 Based on the Mach number, fluid flow can be classified into
incompressible and compressible flows.

 Type of flow affects the mathematical nature of the problem
and therefore the solution method.



CFD APPLICATIONS 



Wide spectrum of applications





Automotive



Medical



Multiphase flows

Oil- water separator



CFD SIMULATION PROCESS



CFD process- Illustration 



CFD process- Flow chart

Pre 
processing

• CAD geometry import, clean-up
• Mesh generation

Numerical 
processing

• Numerical solution of system of equations 
applying boundary / initial conditions

• Numerical Solver ( e.g. Fluent, Open foam)

Post 
processing

• Data Analysis and visualization
• Fluid flow contour, streamlines etc.( e.g. 

paraview)



PRE PROCESSING STAGE  



Geometry import & clean up – An illustration



Mesh generation – Structured mesh 



Mesh generation – Unstructured mesh



NUMERICAL PROCESSING STAGE  



Unknowns in the Governing Equations
• In the CFD simulation, it is required to solve numerically a set of Non-linear partial differential equations called the

Navier- Stokes Equations.

• For example the governing equations for incompressible flow is given as,

• These equations governs the laws of conservation of mass, momentum.

• The unknown includes the velocity and pressure of the fluid at several discrete points.

• There are several pressure and velocity correction based algorithms available to solve these equations (e.g.
SIMPLE)
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Types of fluid flow problems 
• In the CFD simulation, the fluid flow problems are broadly classified into external and internal flow

problems.

• Further classification include steady or unsteady, compressible or incompressible, Laminar or Turbulent
flow, one or two or three dimensional flows, natural or forced convection flows.

Unsteady external flow past a circular cylinder

Unsteady external  flow past a square cylinder

Internal flow in a pipe

Flow inside a lid driven cavity



POST PROCESSING STAGE 



Data Analysis & Visualization- An Illustration



CLASSIFICATION OF PARTIAL 
DIFFERENTIAL EQUATION 

CHARACTERISTICS    



Characteristics of PDE systems

Consider the linear PDE system

This system is said to be elliptic for the case  

It is parabolic if 

It is hyperbolic when 
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Elliptic PDE
• Consider steady two dimensional heat conduction governed by the equation 
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• Here, A = C = k and B = 0. Hence

• Therefore, the system is elliptic. 

• For an elliptic PDE, the boundary conditions need to be given on a closed boundary.

• In other words, the boundary conditions all around influence the solution at a point 
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Boundary conditions for elliptic systems



Parabolic PDE
• Transient heat conduction problem which follows the governing equation

• Here, A = a, B= 0 and C = 0.

• Hence, 

• It is a parabolic system.

• For a parabolic system the conditions need to specified as shown below. 
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Hyperbolic PDE

• The wave equation is a hyperbolic system, with c denoting the acoustic speed.

• Here, B = 0 and A = 1, C = -c2.

• Hence, B2 – 4AC = 0 – 4x1x (-c2) = 4 c2 >0.

• For a hyperbolic system, there are characteristic variables which determine the number of boundary

conditions to be given.

• In the above case, the two characteristics (x + ct) and (x– ct) represent the solutions corresponding to the

backward-and forward- propagating waves.
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Boundary conditions for hyperbolic PDE

• A compressible flow has three characteristic velocities i.e. u+c, u, u-c. 

• Depending on the number of characteristics crossing into the domain at the boundary, the b.c. are decided.

• u+c

• u

u-c
u+c

u
u-c

Subsonic flow Supersonic flow



BASIC ASPECTS OF NUMERICAL 
DISCRETIZATION METHODS FOR 

PARTIAL DIFFERENTIAL 
EQUATION (PDE)     



Types of Numerical Discretization Techniques 

• FINITE DIFFERENCE METHOD 

• FINITE VOLUME METHOD

• FINITE ELEMENT METHOD

• BOUNDARY ELEMENT METHOD

• SPECTRAL METHOD



Finite Difference Method 

• In this method, differential equations are converted into difference expressions

or   
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Finite Volume Method 
• Flux balance is applied for each cell.

• Heat flux in – Heat flux out = rate of thermal storage

• Fluxes are approximated using neighboring nodes



Finite Element Method 
• While FDM & FVM are applied for flow/thermal problems, FEM was initially developed for structural

problems.

• In this method, a large structure is divided into small elements and characteristic of each element is
written as a matrix contribution.

• By adding contributions of all elements, wet matrix equation for the whole geometry.



APPLICATIONS OF FINITE 
DIFFERENCE METHOD



Taylor Series Expansions 
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Derivative Approximations
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Estimation of Error
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NUMERICAL ALGORTHIM TO SOLVE 
NAVIER STOKES EQUATION-

PRESSURE CORRECTION 
APPROACH 



VELOCITY-PRESSURE FORMULATION
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CONTINUITY EQUATION

X-MOMENTUM EQ. (FOR UPDATING U VELOCITY):

Y-MOMENTUM EQ. (FOR UPDATING V VELOCITY):



SIMPLE METHOD
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Semi- IMplicit Pressure Linked Equation Solver-- SIMPLE 
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VELOCITY CORRECTION EQUATION- x momentum
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VELOCITY CORRECTION EQUATION- y momentum



PRESSURE CORRECTIONS
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Substituting for velocity & pressure corrections, we get



Step Involved In SIMPLE 
• At the start of a time step, assume a guess pressure field p*

• Solve momentum equations to get guess velocities u* and v* at each
node

• Using u* and v* calculate continuity residue at each point

• From continuity equation residue, solve for pressure correction p’ at
each node

• Using p’ solve for velocity corrections

• Update variables as pn+1=p*+p’, un+1=u*+u’, vn+1= v*+v’

• And go to next time step



Staggered & Collocated Mesh

x

y



Staggered Mesh Procedure 

• Pressure nodes are taken as the main nodes.

• x-velocity (u) nodes are shifted by dx/2 with reference to pressure
nodes .

• and y-velocity (v) nodes are shifted by dy/2 with reference to pressure
nodes.

• Such a staggered mesh avoids odd-even decoupling (chequer-board
configuration) between velocities & pressures .


