
MEE4006- Computational Fluid Dynamics(CFD)
Dr. N.Sekarapandian

Associate Professor,

School of Mechanical Engineering (SMEC),

VIT University,

Vellore-632014, Tamilnadu, India

CFD Overview

Fluid
mechanics

Computer
science

Numerical
analysis

CFD

 Lots of university offer courses on CFD and it is an active
area of research

 Number of software packages available (e.g. Ansys Fluent)

 Vast literature available on numerical methods for fluid
mechanics.

 Widely accepted as a design tool by industrial users

 Even with incompressible flow – impossible to cover
everything in single work.

 Based on the speed, the fluid flow is broadly classified into
creeping, laminar and turbulent flows.

 Based on the Mach number, fluid flow can be classified into
incompressible and compressible flows.

 Type of flow affects the mathematical nature of the problem
and therefore the solution method.

CFD APPLICATIONS

Wide Spectrum of Applications

Automotive

Medical

Multiphase flows

Oil- water separator

CFD SIMULATION PROCESS

CFD Process- Illustration

CFD Process- Flow Chart

Pre
processing

• CAD geometry import, clean-up
• Mesh generation

Numerical
processing

• Numerical solution of system of equations applying
boundary / initial conditions

• Numerical Solver (e.g. Fluent, Open foam)

Post
processing

• Data Analysis and visualization
• Fluid flow contour, streamlines etc.(e.g. paraview)

PRE-PROCESSING STAGE

Geometry Import & Clean-up – An Illustration

Mesh Generation – Structured Mesh

Mesh Generation – Unstructured Mesh

NUMERICAL PROCESSING
STAGE

Unknowns in the Governing Equations
• In the CFD simulation, it is required to solve numerically a set of Non-linear partial differential equations called the

Navier- Stokes Equations.

• For example the governing equations for incompressible flow is given as,

• These equations governs the laws of conservation of mass, momentum.

• The unknown includes the velocity and pressure of the fluid at several discrete points.

• There are several pressure and velocity correction based algorithms available to solve these equations (e.g.
SIMPLE)

0











z

w

y

v

x

u

xgu
x

p

z

u
w

y

u
v

x

u
u

t

u  

















 2)(

ygv
y

p

z

v
w

y

v
v

x

v
u

t

v  

















 2)(

zgw
z

p

z

w
w

y

w
v

x

w
u

t

w  

















 2)(

Continuity eq.:

x-mom.:

y-mom.:

z-mom.:

Types of Fluid Flow Problems
• In the CFD simulation, the fluid flow problems are broadly classified into external and internal flow problems.

• Further classification include steady or unsteady, compressible or incompressible, Laminar or Turbulent flow, one
or two or three dimensional flows, natural or forced convection flows.

Unsteady external flow past a circular cylinder

Unsteady external flow past a square cylinder

Internal flow in a pipe

Flow inside a lid driven cavity

POST PROCESSING STAGE

Data Analysis & Visualization- An Illustration

CLASSIFICATION OF
PARTIAL DIFFERENTIAL

EQUATION
CHARACTERISTICS

Characteristics of PDE Systems

Consider the linear PDE system

This system is said to be elliptic for the case

It is parabolic if

It is hyperbolic when

0
2

22

2

2














y
C

yx
B

x
A



.042  ACB

.042  ACB

.042  ACB

Elliptic PDE
• Consider steady two dimensional heat conduction governed by the equation

0
2

2

2

2
















Q
y

T

x

T
k

• Here, A = C = k and B = 0. Hence

• Therefore, the system is elliptic.

• For an elliptic PDE, the boundary conditions need to be given on a closed boundary.

• In other words, the boundary conditions all around influence the solution at a point

.044 22  kACB

P P

b.c.

b.c.

b.c. b.c.

b.c.

Boundary conditions for elliptic systems

Parabolic PDE
• Transient heat conduction problem which follows the governing equation

• Here, A = a, B= 0 and C = 0.

• Hence,

• It is a parabolic system.

• For a parabolic system the conditions need to specified as shown below.

2

2

2

2

x

T

x

T

c

k

t

T










 a



At t=0, initial condition

At x=0, b.c At x=L, b.c

042  ACB

Hyperbolic PDE

• The wave equation is a hyperbolic system, with c denoting the acoustic speed.

• Here, B = 0 and A = 1, C = -c2.

• Hence, B2 – 4AC = 0 – 4x1x (-c2) = 4 c2 >0.

• For a hyperbolic system, there are characteristic variables which determine the number of boundary

conditions to be given.

• In the above case, the two characteristics (x + ct) and (x– ct) represent the solutions corresponding to the

backward-and forward- propagating waves.

2

2
2

2

2

x

y
c

t

y








Boundary Conditions for Hyperbolic PDE

• A compressible flow has three characteristic velocities i.e. u+c, u, u-c.

• Depending on the number of characteristics crossing into the domain at the boundary, the b.c. are decided.

• u+c

• u

u-c
u+c

u
u-c

Subsonic flow Supersonic flow

BASIC ASPECTS OF
NUMERICAL

DISCRETIZATION
METHODS FOR PARTIAL

DIFFERENTIAL
EQUATION (PDE)

Types of Numerical Discretization Techniques

• Finite difference method

• Finite volume method

• Finite element method

• Boundary element method

• Spectral method

Finite Difference Method

• In this method, differential equations are converted into difference expressions

• In this method, approximations for the derivatives at the grid points have to be selected.

or x

TT

dx

dT ii




 1

x

TT ii


1

i-1 i i+1

Finite Volume Method
• Flux balance is applied for each cell.

• Heat flux in – Heat flux out = rate of thermal storage

• Fluxes are approximated using neighboring nodes

• In this method, one has to select the methods of approximating the surface or volume integrals.

Finite Element Method
• While FDM & FVM are applied for flow/thermal problems, FEM was initially developed for structural

problems.

• In this method, a large structure is divided into small elements and characteristic of each element is
written as a matrix contribution.

• By adding contributions of all elements, wet matrix equation for the whole geometry.

• In this method, one has to choose the functions(elements) and weighting functions.

APPLICATIONS OF FINITE
DIFFERENCE METHOD

Taylor Series Expansions

)(
!

....
!3!2

1
3

3

32

2

2

1


 







































 n

n

n

n

ii

ii xO
n

x

dx

Tdx

dx

Tdx

dx

Td
x

dx

dT
TT

)(0
!

)(
....

!3!2
1

3

3

32

2

2

1


 







































 n

n

n

n

ii
ii x

n

x

dx

Tdx

dx

Tdx

dx

Td
x

dx

dT
TT

)x(0
!n

)x2(

dx

Td
.......

!3

)x2(

dx

Td

!2

)x2(

dx

Td
)x2(

dx

dT
TT

1n
n

n

n

3

3

32

i
2

2

i
i2i















































)x(0
!n

)x2(

dx

Td

!3

)x2(

dx

Td

!2

)x2(

dx

Td
)x2(

dx

dT
TT

1n
n

i
n

n

3

i
3

32

i
2

2

i
i2i















































First Derivative Approximation

)x(0
x

TT

!3

x

dx

Td

!2

x

dx

Td

x

TT

dx

dT

i1i

2

i
3

3

i
2

2
i1i

i












































)(0

!3!2

1

2

3

3

2

2
1

x
x

TT

x

dx

Tdx

dx

Td

x

TT

dx

dT

ii

ii

ii

i












































)(
2

211 xO
x

TT

dx

dT ii

i











 

Forward Difference

Backward Difference

Central Difference

4 3 2 01 2
3T T T

dT

dx
x xi i i

i
   







  ()

dT

dx

T T T

x
x

i

i i i





 

 
 4 3

2
01 2 2


()

One Sided Difference

.......
!4

x

dx

Td
2

!2

x

dx

Td
2T2TT

4

i
4

42

i
2

2

i1i1i 





















 

d T

dx

T T T

x
x

i

i i i
2

2
1 1

2
22

0








 

 
 


()

Second Derivative Approximation
Central Difference

Estimation of Error

 = O (x2, t)

 i
k

i
k

i
kT x t T x t (,) (,)*

kk
i

2
i

k
i tandx 

FDM For One-D Heat Conduction

k
d T

dx
Q

2

2 0 

k
d T

dx
Q k

T T T

x
Q x

i

i i i
2

2
1 1

2
22

0








  

 
  ()

()




Ti+1 + Ti-1 - 2Ti = - Qx2/k

TO TN
AT X = 0, T = TO

AT X = L, T = TN

Flux Type Boundary Condition- Method 1

at x = L
dT

dx
 0

0
x2

TT

dx

dT N2N

1Ni











 



k T T T

x
QN N N()  

 2 1
2

2
0



2
01

2

k T T

x
QN N()

 


dT

dx
 0TO

IMAGE POINT METHOD

)(
!

....
!3!2

1
3

3

32

2

2

1


 







































 n

n

n

n

ii

ii xO
n

x

dx

Tdx

dx

Tdx

dx

Td
x

dx

dT
TT

Applying Taylor's series expansion at boundary point

dT/dx = 0 and d2T/dx2 = -Q/k and higher order terms are zero. Hence

TN+1 = TN – Q Dx2/2k

Flux Type Boundary Condition- Method 2

It is possible to use local Polynomial expansions of the form

T = A x2 + B x + C

and use three nodes to fit a quadratic expression for the variable. From such
an expansion the required derivatives at boundary can be evaluated for
implementing the flux type BC

Flux Type Boundary Condition- Method 3

Matrix Form For Flux Type BC































































































kxQ

kxQ

kxQ

kxQ

kxQ

T

T

T

T

T

T

T b

2/

/

/

/

/

110000

121000

012100

001210

000121

000001

2

2

2

2

2

6

5

4

3

2

1

Two-D Heat Conduction

k
T

x

T

y
Q







2

2

2

2 0








  




2

2

1 1

2
2

2
0

T

x

T T T

x
x

i j

i j i j i j







 

 


 

,

, , ,
()




)(0
2

2
2

,1,1,

,
2

2

y
y

TTT

y

T jijiji

ji













 




k T T T

x

k T T T

y
Q

i j i j i j i j i j i j() (), , , , , ,    


 
 1 1

2

1 1

2

2 2
0

 

i,j
i+1,ji-1,j

i,j-1

i,j+1

Implementation of BC

k

xQ
T)1(2)TT(TT

2

j,i
2

1j,i1j,i
2

j,1ij,1i


 

where the grid aspect ratio  = x/y. Consider the
boundary condition

  


k
T

x
h T T

i i
f


 max

()

  


k
T

x
h T T

i i
f


 max

()
)(0

!2
3

2

,

2

2

,
,,1 x

x

x

T
x

x

T
TT

jiji
jiji 

















 





Ti-1,j = Ti,j + { h (Ti,j - Tf)/k}x  
  Q x

k

T T Ti j i j i j 2 2
1 1

2

2

2

 (), , .

The same expression is obtained by image point method

imax+1,j

Convective Boundary Condition

imax+1,j

At i=imax,)(fTTh
x

T
k 





k

TTh

x

TT

x

T fjijiji)(max,,1max,1max 








 

k

TTxh
TT fji

jiji

)(max,
,1max,1max


 

k

xQ
TTTTT jijijijiji

2

max,
2

1max,1max,
2

,1max,1max)1(2)(


  

Applying heat balance at node imax, we have

k

xQ
TTT

k

TTxh
T jijiji

fji
ji

2

max,
2

1max,1max,
2max,

,1max)1(2)(
)(

2





  

Substituting for the image point temperature, we get:

Image Point Method

Using image point, discretize the boundary condition and substitute in governing
equation

For corner points with two flux type bc

x
i,ji-1,j i+1,j

x

x

i,j

i,j+1

i,j-1x

Solution Methods

2(12) Ti,j = T*
i+1,j + T*

i-1,j + 2(T*
i,j+1 + T*

i,j-1) + Qx2/k

)TT(
k

xQ
T)1(2TT *

1j,i
*

1j,i
2

2

j,i
2

j,1ij,1i  




*
j,1i

*
j,1i

2

j,i
2

1j,i1j,i
2 TT

k

xQ
T)1(2)TT( 




T W T W Ti j
k

i j i j
k

, , ,()    1 1

Point –by-Point Method

Line-by-Line Method

Under-relaxation/ Over-relaxation

Transient Heat Conduction

Tb Tb

Ti
Q

x

T
k

t

T
c p 








2

2



T = Tb at x = 0 and x = L

Boundary Conditions:

Initial Condition:

T = Ti for all 0 < x < L

Methods For Transient Marching

• Explicit method

• Implicit method

• Semi-implicit method (Crank- Nicolson technique)

Explicit Method
n

i

n

i x

T

t

T





















2

2

a

n

i

n
i

n
i t

T
tTT 










1

)2)(/(11
21 n

i
n
i

n
i

n
i

n
i TTTxtTT  
 a

Implicit Method
1

1


 










n

i

n
i

n
i t

T
tTT

1

2

21 






















n

i

n

i x

T

t

T a

n
i

n
i

n
i

n
i

n
i TTTTxtT  





)2)(/(11

1
1

1
21 a

Semi-Implicit method

}){2/(
1

1


 




















n

i

n

i

n
i

n
i t

T

t

T
tTT

)2)(2/()2)(2/(11
211

1
1

1
21 n

i
n
i

n
i

n
i

n
i

n
i

n
i

n
i TTTxtTTTTxtT  







 aa

Comparison of Implicit/ Explicit methods
• Explicit method involves pointwise updating & requires no matrix inversion.

Implicit Scheme needs Matrix inversion

• Computational time per time step is more for Implicit method than the Explicit.

• From stability considerations, explicit scheme may require very small time
steps and hence several thousand steps to obtain steady state solution. Large
time steps can be used in implicit scheme

• Both explicit & implicit methods are while Semi-implicit scheme is
second order accurate

)tO 

Alternating Direction Implicit Method

Q
y

T

x

T
k

t

T
C p 












)(
2

2

2

2



Q
y

T

x

T
k

t

T
C

nn

p 







































2

21

2

2



Q
y

T

x

T
k

t

T
C

nn

p 





































 2

2

21

2

2



X-Dir. Implicit

Y-Dir. Implicit

One-D Convection Diffusion Equation

2

2

dx

Td

dx

dT
u a

ii-1 i+1

u

2
1111 2

2 x

TTT

x

TT
u iiiii






  a

0)2/1()2/1(2 11   icici TPeTPeT

Pec = ux/a

Cell Pe < 2 for spatial stability, when central difference is used

Using Central Difference Scheme

Upwind Differencing

ii-1 i+1

DIFFUSION

ii-1 i+1

CONVECTION

2
111 2

x

TTT

x

TT
u iiiii






  a

0)1()1(2 11   iciic TPeTTPe

0|)|1(|)|1(2 11   iicic TTPeTPe

For U>0

For U<0

Artificial Diffusion

0)1()1(2 11   iciic TPeTTPe

0)2/1()2/1(2 11   icici TPeTPeT

Central Difference:

Upwind Difference:

)2)(2/(11 iiic TTTPeDIFFERENCE  

Artificial Diffusion

2

2

2

2

dx

Td

dx

Td

dx

dT
u aaa 

The last term on the right is the artificial diffusion term

)2)(1())(2/(1111 iii
a

ii TTTTTxu   a
a

a

By setting (aa/a) = Pec/2, one can get the upwind form from central difference form

Upwinding & Artificial Diffusion
• Upwinding can be done with higher order accuracy.

• For node i, we can consider the nodes (i-2), (i-1) and (i) to get second order
accurate expression for convective term. Even nodes (i-2), (i-1), (i) and (i+1) can
be taken for third order accuracy.

• For artificial diffusion 2nd order, or 4th order or 6th order expressions etc. can be
used.

Higher order Artificial Diffusion

6

6

4

4

2

2

2

2

dx

Td

dx

Td

dx

Td

dx

Td

dx

dT
u VI

a
IV
a

II
a aaaa 

2
11

2

2 2

x

TTT

dx

Td iii




 

4
2112

4

4 464

x

TTTTT

dx

Td iiiii




 

Artificial Diffusion

• Can be used in flow direction for high speed flows to avoid numerical
oscillations; need not be used in cross- flow direction

• Can be used to smoothen the solution at shocks & high gradient regions

Properties of Numerical solution methods
• Consistency: For a method to be consistent, the truncation error must become zero when the mesh

spacing

• Can be used to smoothen the solution at shocks & high gradient regions

0t

NUMERICAL ALGORTHIM TO SOLVE
NAVIER STOKES EQUATION-

PRESSURE CORRECTION
APPROACH

Velocity-Pressure Formulation

0







y

v

x

u

}{
1

2

2

2

2

y

u

x

u

x

p

y

u
v

x

u
u

t

u





























}{
1

2

2

2

2

y

v

x

v

y

p

y

v
v

x

v
u

t

v





























Continuity Equation

X-Momentum Eq. (For Updating U Velocity):

Y-Momentum Eq. (For Updating V Velocity) :

SIMPLE Method

nnn

y

u

x

u

x

p

y

u
v

x

u
u

t

u
}{

1
)(

2

2

2

21































nnn

y

v

x

v

y

p

y

v
v

x

v
u

t

v
}{

1
)(

2

2

2

21































Semi- IMplicit Pressure Linked Equation Solver-- SIMPLE

nnn

nn

y

u

x

u
t

x

p
t

y

u
v

x

u
utuu }{.

1
.).(

2

2

2

21

1






























X-mom.:

Y-mom.:

nnn

nn

y

v

x

v
t

y

p
t

y

v
v

x

v
utvv }{.

1
.).(

2

2

2

21

1






























Velocity Correction Equation – X Momentum

nnn

nn

y

u

x

u
t

x

p
t

y

u
v

x

u
utuu }{.

1
.).(

2

2

2

21

1






























nn

n

y

u

x

u
t

x

p
t

y

u
v

x

u
utuu }{.

1
.).(

2

2

2

2*

*


























*1

*1 1
.

1
. 



























x

p
t

x

p
tuu

n

n



nnn

nn

y

v

x

v
t

y

p
t

y

v
v

x

v
utvv }{.

1
.).(

2

2

2

21

1






























nn

n

y

v

x

v
t

y

p
t

y

v
v

x

v
utvv }{.

1
.).(

2

2

2

2*

*


























*1

*1 1
.

1
. 



























y

p
t

y

p
tvv

n

n



Velocity Correction Equation – Y Momentum

Pressure Corrections

*1' uuu n  
*1' vvv n   *1' ppp n  

Define

x

pt
u





''

 y

pt
v





''



It can be shown that











































y

v

x

u

ty

v

x

u

ty

p

x

p **''

2

'2

2

'2 

Substituting for velocity & pressure corrections, we get

Steps Involved In SIMPLE

• At the start of a time step, assume a guess pressure field p*

• Solve momentum equations to get guess velocities u* and v* at each node

• Using u* and v* calculate continuity residue at each point

• From continuity equation residue, solve for pressure correction p’ at each
node

• Using p’ solve for velocity corrections

• Update variables as pn+1=p*+p’, un+1=u*+u’, vn+1= v*+v’

• And go to next time step

Staggered & Collocated Mesh

x

y

Staggered Mesh Procedure

• Pressure nodes are taken as the main nodes.

• x-velocity (u) nodes are shifted by dx/2 with reference to pressure nodes .

• and y-velocity (v) nodes are shifted by dy/2 with reference to pressure nodes.

• Such a staggered mesh avoids odd-even decoupling (chequer-board
configuration) between velocities & pressures .

Typical Flow Boundary Conditions

U

u=0, v=0, w=0
(no slip-condition on the wall)

Far stream b.c.  u=Ua, v=0,w=0, p=pa

Inlet b.c.

No-slip b.c.

Symmetry
v=0, y-der. = 0

Exit b.c.
extrapolation

Typical Thermal Boundary Conditions

Temp. specified
T = Tw

Adiabatic.
Heat flux = 0

Prescribed heat flux
-k(dT/dn) = q

Convective b.c
-k(dT/dn) = h(T-Tf)

Radiative b.c.
-k(dT/dn) = se(T4-Ta

4)q

Ambient at Ta

Flow

TURBULENT FLOWS – FUNDAMENTALS
AND ASPECTS OF TURBULENCE

MODELLING FOR NUMERICAL
SIMULATION OF TURBULENT FLOWS

Reynolds experiment

Characterization of Turbulent Flows

• Highly unsteady flows- For e.g. velocity as a function of time would appear random.

• Three dimensional – Time averaged qty. may be two dimensional.

• Contains great deal of vorticity - stretching of vortices increase the turbulence
intensity.

• Turbulence increases the rate of stirring of conserved properties of fluid. Often
called diffusion.

• Increases the mixing of momentum and to reduction of kinetic energy of flow. Often
called dissipation.

• The loss of energy is converted into internal energy of the fluid.

• Contains coherent structures – repeatable and essentially deterministic events –
largely causes mixing.

3-D trans critical flow showing
turbulent vortical structures

Coherent structures in jet in cross flow

Turbulence in the tip vortex in an
airplane wing

Unsteady random flow

Dissipation in Turbulent flowsc Diffusion in Turbulent flows

