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CFD Overview

Fluid 
mechanics

Computer 
science

Numerical 
analysis

CFD

 Lots of university offer courses on CFD and it is an active
area of research

 Number of software packages available (e.g. Ansys Fluent)

 Vast literature available on numerical methods for fluid
mechanics.

 Widely accepted as a design tool by industrial users

 Even with incompressible flow – impossible to cover
everything in single work.

 Based on the speed, the fluid flow is broadly classified into
creeping, laminar and turbulent flows.

 Based on the Mach number, fluid flow can be classified into
incompressible and compressible flows.

 Type of flow affects the mathematical nature of the problem
and therefore the solution method.



CFD APPLICATIONS 



Wide Spectrum of Applications





Automotive



Medical



Multiphase flows

Oil- water separator



CFD SIMULATION PROCESS



CFD Process- Illustration 



CFD Process- Flow Chart

Pre 
processing

• CAD geometry import, clean-up
• Mesh generation

Numerical 
processing

• Numerical solution of system of equations applying 
boundary / initial conditions

• Numerical Solver ( e.g. Fluent, Open foam)

Post 
processing

• Data Analysis and visualization
• Fluid flow contour, streamlines etc.( e.g. paraview)



PRE-PROCESSING STAGE  



Geometry Import & Clean-up – An Illustration



Mesh Generation – Structured Mesh 



Mesh Generation – Unstructured Mesh



NUMERICAL PROCESSING 
STAGE  



Unknowns in the Governing Equations
• In the CFD simulation, it is required to solve numerically a set of Non-linear partial differential equations called the

Navier- Stokes Equations.

• For example the governing equations for incompressible flow is given as,

• These equations governs the laws of conservation of mass, momentum.

• The unknown includes the velocity and pressure of the fluid at several discrete points.

• There are several pressure and velocity correction based algorithms available to solve these equations (e.g.
SIMPLE)
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Types of Fluid Flow Problems 
• In the CFD simulation, the fluid flow problems are broadly classified into external and internal flow problems.

• Further classification include steady or unsteady, compressible or incompressible, Laminar or Turbulent flow, one
or two or three dimensional flows, natural or forced convection flows.

Unsteady external flow past a circular cylinder

Unsteady external  flow past a square cylinder

Internal flow in a pipe

Flow inside a lid driven cavity



POST PROCESSING STAGE 



Data Analysis & Visualization- An Illustration



CLASSIFICATION OF 
PARTIAL DIFFERENTIAL 

EQUATION 
CHARACTERISTICS    



Characteristics of PDE Systems

Consider the linear PDE system

This system is said to be elliptic for the case  

It is parabolic if 

It is hyperbolic when 
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Elliptic PDE
• Consider steady two dimensional heat conduction governed by the equation 
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• Here, A = C = k and B = 0. Hence

• Therefore, the system is elliptic. 

• For an elliptic PDE, the boundary conditions need to be given on a closed boundary.

• In other words, the boundary conditions all around influence the solution at a point 
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Boundary conditions for elliptic systems



Parabolic PDE
• Transient heat conduction problem which follows the governing equation

• Here, A = a, B= 0 and C = 0.

• Hence, 

• It is a parabolic system.

• For a parabolic system the conditions need to specified as shown below. 
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Hyperbolic PDE

• The wave equation is a hyperbolic system, with c denoting the acoustic speed.

• Here, B = 0 and A = 1, C = -c2.

• Hence, B2 – 4AC = 0 – 4x1x (-c2) = 4 c2 >0.

• For a hyperbolic system, there are characteristic variables which determine the number of boundary

conditions to be given.

• In the above case, the two characteristics (x + ct) and (x– ct) represent the solutions corresponding to the

backward-and forward- propagating waves.
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Boundary Conditions for Hyperbolic PDE

• A compressible flow has three characteristic velocities i.e. u+c, u, u-c. 

• Depending on the number of characteristics crossing into the domain at the boundary, the b.c. are decided.

• u+c

• u

u-c
u+c

u
u-c

Subsonic flow Supersonic flow



BASIC ASPECTS OF 
NUMERICAL 

DISCRETIZATION 
METHODS FOR PARTIAL 

DIFFERENTIAL 
EQUATION (PDE)     



Types of Numerical Discretization Techniques 

• Finite difference method 

• Finite volume method

• Finite element method

• Boundary element method

• Spectral method



Finite Difference Method 

• In this method, differential equations are converted into difference expressions

• In this method, approximations for the derivatives at the grid points have to be selected.
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Finite Volume Method 
• Flux balance is applied for each cell.

• Heat flux in – Heat flux out = rate of thermal storage

• Fluxes are approximated using neighboring nodes

• In this method, one has to select the methods of approximating the surface or volume integrals. 



Finite Element Method 
• While FDM & FVM are applied for flow/thermal problems, FEM was initially developed for structural

problems.

• In this method, a large structure is divided into small elements and characteristic of each element is
written as a matrix contribution.

• By adding contributions of all elements, wet matrix equation for the whole geometry.

• In this method, one has to choose the functions(elements) and weighting functions.



APPLICATIONS OF FINITE 
DIFFERENCE METHOD



Taylor Series Expansions 
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First Derivative Approximation
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Estimation of Error
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FDM For One-D Heat Conduction 

k
d T

dx
Q

2

2 0 

k
d T

dx
Q k

T T T

x
Q x

i

i i i
2

2
1 1

2
22

0








  

 
  ( )

( )




Ti+1 + Ti-1 - 2Ti = - Qx2/k

TO TN
AT X = 0, T = TO

AT X = L, T = TN



Flux Type Boundary Condition- Method 1 
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Applying Taylor's series expansion at boundary point

dT/dx = 0 and d2T/dx2 = -Q/k and higher order terms are zero. Hence

TN+1 = TN – Q Dx2/2k 

Flux Type Boundary Condition- Method 2 



It is possible to use local Polynomial expansions of the form

T = A x2 + B x + C

and use three nodes to fit a quadratic expression for the variable. From such
an expansion the required derivatives at boundary can be evaluated for
implementing the flux type BC

Flux Type Boundary Condition- Method 3 



Matrix Form For Flux Type BC
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Two-D Heat Conduction 
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Implementation of BC
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Convective Boundary Condition
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Substituting for the image point temperature, we get:



Image Point Method 

Using image point, discretize the boundary condition and substitute in governing 
equation

For corner points with two flux type bc
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Solution Methods 
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Transient Heat Conduction
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Methods For Transient Marching 

• Explicit method

• Implicit method

• Semi-implicit method (Crank- Nicolson technique)



Explicit Method 
n

i

n

i x

T

t

T





















2

2

a

n

i

n
i

n
i t

T
tTT 










1

)2)(/( 11
21 n

i
n
i

n
i

n
i

n
i TTTxtTT  
 a



Implicit Method 
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Semi-Implicit method
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Comparison of Implicit/ Explicit methods
• Explicit method involves pointwise updating & requires no matrix inversion.  

Implicit Scheme needs Matrix inversion

• Computational time per time step is more for Implicit method than the Explicit.

• From stability considerations, explicit scheme may require very small time 
steps and hence several thousand steps to obtain steady state solution. Large 
time steps can be used in implicit scheme

• Both explicit & implicit methods are             while Semi-implicit scheme is 
second order accurate

 )tO 



Alternating Direction Implicit Method 
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One-D Convection Diffusion Equation 
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Cell Pe < 2 for spatial stability, when central difference is used

Using Central Difference Scheme 



Upwind Differencing 
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Artificial Diffusion 
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Artificial Diffusion 
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The last term on the right is the artificial diffusion term
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By setting (aa/a) = Pec/2, one can get the upwind form from central difference form



Upwinding & Artificial Diffusion 
• Upwinding can be done with higher order accuracy.

• For node i, we can consider the nodes (i-2), (i-1) and (i) to get second order 
accurate expression for convective term. Even nodes (i-2), (i-1), (i) and (i+1) can 
be taken for third order accuracy.

• For artificial diffusion 2nd order, or 4th order or 6th order expressions etc. can be 
used.



Higher order Artificial Diffusion 
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Artificial Diffusion 

• Can be used in flow direction for high speed flows to avoid numerical
oscillations; need not be used in cross- flow direction

• Can be used to smoothen the solution at shocks & high gradient regions



Properties of Numerical solution methods 
• Consistency: For a method to be consistent, the truncation error must become zero when the mesh

spacing

• Can be used to smoothen the solution at shocks & high gradient regions
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NUMERICAL ALGORTHIM TO SOLVE 
NAVIER STOKES EQUATION-

PRESSURE CORRECTION 
APPROACH 



Velocity-Pressure Formulation 
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Continuity Equation 

X-Momentum Eq. (For Updating U Velocity):

Y-Momentum Eq. (For Updating V Velocity) :



SIMPLE Method 
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Semi- IMplicit Pressure Linked Equation Solver-- SIMPLE 
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Velocity Correction Equation – X Momentum 
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Velocity Correction Equation – Y Momentum 



Pressure Corrections 
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Substituting for velocity & pressure corrections, we get



Steps Involved In SIMPLE 

• At the start of a time step, assume a guess pressure field p*

• Solve momentum equations to get guess velocities u* and v* at each node

• Using u* and v* calculate continuity residue at each point

• From continuity equation residue, solve for pressure correction p’ at each
node

• Using p’ solve for velocity corrections

• Update variables as pn+1=p*+p’, un+1=u*+u’, vn+1= v*+v’

• And go to next time step



Staggered & Collocated Mesh

x

y



Staggered Mesh Procedure 

• Pressure nodes are taken as the main nodes.

• x-velocity (u) nodes are shifted by dx/2 with reference to pressure nodes .

• and y-velocity (v) nodes are shifted by dy/2 with reference to pressure nodes.

• Such a staggered mesh avoids odd-even decoupling (chequer-board
configuration) between velocities & pressures .



Typical Flow Boundary Conditions

U

u=0, v=0, w=0
(no slip-condition on the wall)

Far stream b.c.  u=Ua, v=0,w=0, p=pa

Inlet b.c.

No-slip b.c.

Symmetry
v=0, y-der. = 0

Exit b.c.
extrapolation



Typical Thermal Boundary Conditions 

Temp. specified
T = Tw

Adiabatic.
Heat flux = 0

Prescribed heat flux
-k(dT/dn) = q

Convective b.c
-k(dT/dn) = h(T-Tf)

Radiative b.c.
-k(dT/dn) = se(T4-Ta

4)q

Ambient at Ta

Flow



TURBULENT FLOWS – FUNDAMENTALS 
AND ASPECTS OF TURBULENCE 

MODELLING FOR NUMERICAL 
SIMULATION OF TURBULENT FLOWS



Reynolds experiment



Characterization of Turbulent Flows 

• Highly unsteady flows- For e.g. velocity as a function of time would appear random.

• Three dimensional – Time averaged qty. may be two dimensional.

• Contains great deal of vorticity - stretching of vortices increase the turbulence
intensity.

• Turbulence increases the rate of stirring of conserved properties of fluid. Often
called diffusion.

• Increases the mixing of momentum and to reduction of kinetic energy of flow. Often
called dissipation.

• The loss of energy is converted into internal energy of the fluid.

• Contains coherent structures – repeatable and essentially deterministic events –
largely causes mixing.



3-D trans critical flow showing 
turbulent vortical structures

Coherent structures in jet in cross flow 

Turbulence in the tip vortex in an 
airplane wing 

Unsteady random flow

Dissipation in Turbulent flowsc Diffusion  in Turbulent flows


