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CFD Overview

Lots of university offer courses on CFD and it is an active
area of research

Number of software packages available (e.g. Ansys Fluent)

Vast literature available on numerical methods for fluid
mechanics.

Widely accepted as a design tool by industrial users

Even with incompressible flow — impossible to cover
everything in single work.

Based on the speed, the fluid flow is broadly classified into
creeping, laminar and turbulent flows.

Based on the Mach number, fluid flow can be classified into
incompressible and compressible flows.

Type of flow affects the mathematical nature of the problem
and therefore the solution method.



CFD APPLICATIONS



Wide Spectrum of Applications
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Metal processing Valves, flow control Separation and filtration
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Multiphase flows

Oil- water separator




CFD SIMULATION PROCESS



CFD Process- lllustration

4. Compute 5. Visualize




CFD Process- Flow Chart

« CAD geometry import, clean-up
Pre * Mesh generation
processing

* Numerical solution of system of equations applying
boundary / initial conditions

Nsdes o Numerical Solver ( e.g. Fluent, Open foam)
processing

« Data Analysis and visualization
 Fluid flow contour, streamlines etc.( e.g. paraview)



PRE-PROCESSING STAGE



Geometry Import & Clean-up — An lllustration

| Duplicate surface |

! Repair geometry by collapsing .

the short edge into a point
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NUMERICAL PROCESSING
STAGE



Unknowns in the Governing Equations

« In the CED simulation, it is required to solve numerically a set of Non-linear partial differential equations called the
Navier- Stokes Equations.

» For example the governing equations for incompressible flow is given as,

Continuity eq.: Ou +5V+5W:
ox Oy Oz
X-mom.: ou Ou  Ou ou op >
—tu—+v—+w—)=—"--+uVu+
P e TV TV T T A
y-mom.: ov ov  0v ov op 5
—+tU—+Vv—+w—)=—"—+uVv+
p(at Ox y 82) oy # 8y
i : 0 0 0 0 0
Z-mom.. yol( Ly W+v—w+w—w):——p+,uV2w+pgz

ot Ox oy oz 0z

» These equations governs the laws of conservation of mass, momentum.
» The unknown includes the velocity and pressure of the fluid at several discrete points.

. gmrpel_gge several pressure and velocity correction based algorithms available to solve these equations (e.g.



Types of Fluid Flow Problems

* In the CFD simulation, the fluid flow problems are broadly classified into external and internal flow problems.

» Further classification include steady or unsteady, compressible or incompressible, Laminar or Turbulent flow, one
or two or three dimensional flows, natural or forced convection flows.

Unsteady external flow past a square cylinder Flow inside a lid driven cavity



POST PROCESSING STAGE



Data Analysis & Visualization- An lllustration

Pressure coefficient (-)
<-0.15 -0.10 -0.05 0.00 0.05 0.10 >0.15

Velocity:




CLASSIFICATION OF
PARTIAL DIFFERENTIAL
EQUATION
CHARACTERISTICS



Characteristics of PDE Systems

Consider the linear PDE system

2 2 2
A8 ?+B§ s +Ca ?:O
Ox Ox0y oy

This system is said to be elliptic for the case Bz —4A4C <0,

It is parabolic if B2 — 4AC — O

2
It is hyperbolic when B — 4AC > O



Elliptic PDE

Consider steady two dimensional heat conduction governed by the equation
o°T . o°T
ox® oy’

Here, A=C=kand B=0.Hence B>-4AC =-4k* <0.

+0=0

Therefore, the system is elliptic.
For an elliptic PDE, the boundary conditions need to be given on a closed boundary.

In other words, the boundary conditions all around influence the solution at a point

b.c. b.c.

b.c] eP |b.c.

b.c.

Boundary conditions for elliptic systems



Parabolic PDE

Transient heat conduction problem which follows the governing equation

oT k o°T  o°T

= =a
ot  pc Ox° ox”

Here, A= O, B=0and C = 0.

Hence, B> —4A4AC =0

It is a parabolic system

For a parabolic system the conditions need to specified as shown below.

At x=0, b.c At x=L, b.c

At t=0, initial condition



Hyperbolic PDE

0’ 0’
The wave equation g =c? —)2/is a hyperbolic system, with ¢ denoting the acoustic speed.

ot* Ox

Here, B=0andA=1, C =-c2.
Hence, B2 — 4AC = 0 — 4x1x (-c?) =4 ¢2 >0.

For a hyperbolic system, there are characteristic variables which determine the number of boundary
conditions to be given.

In the above case, the two characteristics (x + ct) and (x— ct) represent the solutions corresponding to the
backward-and forward- propagating waves.



Boundary Conditions for Hyperbolic PDE

\—/ \—/
utc_|,
* utc _,
Ju-c u —»
*u T u-c —
/\
/\
Subsonic flow Supersonic flow

« A compressible flow has three characteristic velocities i.e. u+c, u, u-c.

» Depending on the number of characteristics crossing into the domain at the boundary, the b.c. are decided.



BASIC ASPECTS OF
NUMERICAL
DISCRETIZATION
METHODS FOR PARTIAL
DIFFERENTIAL
EQUATION (PDE)



Types of Numerical Discretization Techniques

* Finite difference method

* Finite volume method

* Finite element method

« Boundary element method

» Spectral method



Finite Difference Method

* In this method, differential equations are converted into difference expressions

dT_T;'_T;'—l T;'+1_Ti
dx  Ax or Ax
-1 i i+

» In this method, approximations for the derivatives at the grid points have to be selected.



Finite Volume Method

» Flux balance is applied for each cell.
* Heat flux in — Heat flux out = rate of thermal storage

» Fluxes are approximated using neighboring nodes

* In this method, one has to select the methods of approximating the surface or volume integrals.



Finite Element Method

While FDM & FVM are applied for flow/thermal problems, FEM was initially developed for structural
problems.

In this method, a large structure is divided into small elements and characteristic of each element is
written as a matrix contribution.

By adding contributions of all elements, wet matrix equation for the whole geometry.

In this method, one has to choose the functions(elements) and weighting functions.



APPLICATIONS OF FINITE
DIFFERENCE METHOD



Taylor Series Expansions

2 2 3 3 n _ "
ZIZZ_(d—TjAX+ d{ A d{ S AR (G +0(Ax")
dx ; dx dx

2! 3! dx” n!
2 2 3 3 n n

]-;+1:]-;+(d—Tij+ d{ Ax + d{ Ax + ot dT|Ax +O(Ax™)
dx dx= ) 2! dx* ) 3 dx" ) n!

2 2 3 3
1= o[ 2D) oy £T) 220 ()28
dx ), dx* ) 2 dx’ ) 3

....... +[dnTj(2AXYI+0(Ax““)

dx" n!

2 2 3 3
T =T - d_T) (2A%) + df (2Ax)* df (2Ax)
dx ), dx 2! dx’ ). 3!

LT 2289 +0(Ax"™™)
dx" ). n!




First Derivative Approximation
Forward Difference

(de T, =T, ([d°’T Ax (d°T Ax’
), A X x > ). 2! & * ). 3!

Ti+1 B Ti

- T + 0(AX)
Backward Difference
(de T, -T,., (d°T Ax d’T Ax’

dx l._ A x dx ° ;2! dx . 3!

Ti _ Ti—l
= s + 0 (A Xx)
Central Difference
(de :Ti+1_Ti—1+0(Ax2)

dx ; 2Ax
One Sided Difference

B dar 3 (ﬂj AL, - T, - 3T 2

AT —T,., =3T +2(dx)iAx+O(Ax ) i) = A +0(Ax?)



Second Derivative Approximation
Central Difference

2 2 4 4
+T, ,=2T +2 a1 Ax +2 AT Ax + o
1 1 dx’ o2 dx* 4l

T.

1+1

d’T T;H-FT;_I—ZT; 2
= + 0(Ax")

dx? Ax?



Estimation of Error

el =T(x,t) =T (x,,t*)
efoc Ax? and g oc AtF

e = O (Ax2, At)



FDM For One-D Heat Conduction

dzT
d 2 +Q O
d’T (T, +T_,—-2T) ,
k(dxz J+Q k sz + 0+ 0(Ax")

T, +T., -2T =- QAx%k

ATX=0,T=T,
ATX=L T=T,



Flux Type Boundary Condition- Method 1

dT
—:O =
T atx=1L

(d_Tj _ TN+2 _TN -0
dx ). i 2Ax

k(TN+2 + TN _2TN+1)
Ax? ’

0=0

2k(T, - T,, dT
(ZxZNI)—i_Q:O TO E:O

IMAGE POINT METHOD




Flux Type Boundary Condition- Method 2

Applying Taylor's series expansion at boundary point

T

i+l

2 2 3 3 n n
:Ti+(d—Tij+ d{ Ax + d{ Ax Fot AT |Ax +O0(Ax™)
dx dx” ) 2! dx” ). 3! dx" | n!

dT/dx = 0 and d?T/dx? = -Q/k and higher order terms are zero. Hence



Flux Type Boundary Condition- Method 3

It is possible to use local Polynomial expansions of the form
T =Ax2+Bx+C

and use three nodes to fit a quadratic expression for the variable. From such
an expansion the required derivatives at boundary can be evaluated for

implementing the flux type BC



Matrix Form For Flux Type BC

1 0 0 0 0 Oo]rT T,
1 -2 1 0 0 0|7 —~OAx* | k
0o 1 -2 1 0 0|7 ~OAx* |k
0 0 1 -2 1 0|7]| | -0A*/k
o 0 0 1 -2 1| ~OAX’ | k

0 0 0 0 1 =-1]|T,| |-0A*/2k



k(T;

Two-D Heat Conduction

j =20 k(T4 T, 2T,)

i+1 ]

1,
+
sz Ay2 g

0



Implementation of BC

— QAx”
T, +T, + B’ (T +T) =201+ B’ )T = K
where the grid aspect ratio § = Ax/Ay. Consider the
boundary condition |
4 —WT-T,)
@C i=i max ! lmaX+19J
TH:Ti.—(@j Ax+(§ ZTJ AL oar) >
Az A X 2 —k—| =nT-T))

T'-l =T..+ {h(T.. - Tf)/k}AX _QAx2 - BT, +T . —2T))
R ) 2k 2

The same expression is obtained by image point method



Convective Boundary Condition

At i=1max, - ka—T =h(T-T,)
ox
8T . T;'max+1,j _T;'max—lj . _h(]—;maXJ Tf)
Ox Ax k
hA)C(T; max, j Tf)
imax+1,J = imax—lj k

Applying heat balance at node imax, we have

maXJ 1) 2(1+ﬂ ) imax,j

T

imax+l,j

+T;max -1,j +ﬂ ( zmax1+1

*—o—0o

imax+1,]

_OAx
k

Substituting for the image point temperature, we get:

hAx(T;maXJ f +182(T
imax,j+1

2T,

_T)

imax—1,j

k

zmaXJ 1) 2(1+ﬂ ) zmaXJ:_

QAx”
k




Image Point Method

it
i

1,1 X, .
! AR ARRIIK

Using image point, discretize the boundary condition and substitute in governing
equation

For corner points with two flux type bc . ' X




Solution Methods

Point —by-Point Method
2(1+p32?) T, = T”‘M,j + T”}_Lj - [32(T"<i,j+1 - T*i,j-l) + QAx%/k

Line-by-Line Method

— QAx” " ]
L+ 1, - 2(1+p° )Ti,j = —p° (Ti,j+1 + Ti,j—l)
—QAx”* " ]
Bz (Ti,j+1 +T, ) - 21+ B2 )T = K - T, — T,

Under-relaxation/ Over-relaxation

T =WxT  +(1-WT"



Transient Heat Conduction

Boundary Conditions:
T=T,atx=0and x=1L
Initial Condition:

T=T,forall0<x<L



Methods For Transient Marching

« Explicit method
 Implicit method
« Semi-implicit method (Crank- Nicolson technique)



Explicit Method

(8Tj" o°T
N =
ot ). ox* ).

]—;n+1 :T;n +At(a—T)
ot ).

T""' =T" + (aAt/ Ax* )T

i+1

T Tzfl - 2Tzn)



Implicit Method

n+1
ot ).

n+l ) n+l
oT o T
) Ao

i X i

T —(aAt/ AN + T =27 =T

i+1




Semi-Implicit method

or\' (or\™"
T =T (A2 | 4| ZE
l o+ ( ){( Py l ((% 1 }

T = (aAt 120 )T + T = 217) = T + (et | 287 (T, + T, = 2T))

i+1



Comparison of Implicit/ Explicit methods

« Explicit method involves pointwise updating & requires no matrix inversion.
Implicit Scheme needs Matrix inversion

« Computational time per time step is more for Implicit method than the Explicit.

* From stability considerations, explicit scheme may require very small time
steps and hence several thousand steps to obtain steady state solution. Large
time steps can be used in implicit scheme

« Both explicit & implicit methods are O(At) while Semi-implicit scheme is
second order accurate



Alternating Direction Implicit Method

X-DII’ Imp“C't pcpa_T:k[(aszH +(82];jn:|+Q

Y-Dir. Implicit
6T 62T n+l 62T n+2
c =k




One-D Convection Diffusion Equation

dT d’T
u =
dx dx?

—_—

u

-1 1 1+l

Using Central Difference Scheme
T. -T T. +T._ -2T
U i+1 i—1 —a i+1 i—1 i

2Ax Ax?

2T, —(I—Pec /2)Tl.+1 —(1+Pec /2)Tl._1 =0
Pe_ = uAx/a

Cell Pe < 2 for spatial stability, when central difference is used



Upwind Differencing

<« DIFFUSION —

T, -1, T, +T._ —2T, 1-1 1 1+1

CONVECTION —

-1 1 1+l

For U>0
2(1+Pec)]—; _T;+1 _(1+Pec)]—;'—1 —

For U<0

2(1+| Pe, NT, = (1+| Pe. NT,, — T, =0

i+l



Artificial Diffusion

Central Difference:

2T, —(1—=Pe, /2)T.,, —(1+Pe, /2)T,_, =0
Upwind Difference:

200+ Pe ), =T, —(1+Pe )T, =0

DIFFERENCE = (Pe, | 2)(T,,, +T,_, —2T)



Artificial Diffusion

dT d’T d*T
U—=a +a,
dx dx’ dx’

The last term on the right is the artificial diffusion term

a(l

(uAx126)(T,,, ~T,,) = (1+ 24T, + T, -2T))

a

By setting (o,/a) = Pe_/2, one can get the upwind form from central difference form



Upwinding & Artificial Diffusion
« Upwinding can be done with higher order accuracy.
* For node i, we can consider the nodes (i-2), (i-1) and (i

to
accurate expression for convective term. Even nodes (i-2),
be taken for third order accuracy.

get second order
(i-1), (i) and (i+1) can

« For artificial diffusion 2" order, or 4" order or 6! order expressions etc. can be
used.



Higher order Artificial Diffusion

dT dzT Il dzT IV d4T VI d6T
u—=ao > -i-O[a > -|—0!a 2 -|—0!a p
dx dx dx dx dx

d°’T T, +T_ —2T

i+1

dx? Ax?

i+2 i1 T 6Tz o 4Ti—1 + ]-;'—2
dx’ Ax*

d‘T T,,—A4T,




Artificial Diffusion

« Can be used in flow direction for high speed flows to avoid numerical
oscillations:; need not be used in cross- flow direction

« Can be used to smoothen the solution at shocks & high gradient regions



Properties of Numerical solution methods

« Consistency: For a method to be consistent, the truncation error must become zero when the mesh

spacing Af — ()

« Can be used to smoothen the solution at shocks & high gradient regions



NUMERICAL ALGORTHIM TO SOLVE
NAVIER STOKES EQUATION-
PRESSURE CORRECTION
APPROACH



Velocity-Pressure Formulation

Continuity Equation

2 2
ou ou ou 1 8p_+;1{8 Z'*ﬁ Z}
ot X 0y p O0x p O0x 0y

Y-Momentum Eq. (For Updating V Velocity) :

2 2
a_v+u8_v_|_v8_v:_l 8p_|-'u{a ‘2}_|-a ‘2}}
ot ox 0y p 0y p Ox oy




SIMPLE Method

Semi- IMplicit Pressure Linked Equation Solver-- SIMPLE

n n+1 n
ou ou ou 1 dp pu 0'u  0'u
_ . —_— = - (U —+ v — - T o + *
Xmom ot ( Ox ay) e, ox o {6x2 5)/2}
n n+1 "
1 ’ 2
R LN (RO S [ - R
ox oy p 0x p 0x* 0y
n n+1 2 2 n
Y-mom.: a_v:—(ua—v—l—va—v) —l—a_p _|_,U{a ‘2}—'_8 ‘2}}
ot ox 0y p Oy p Ox* 0Oy
n+1 2 2 "
V"H:v”—At.(u@—v-i-Va—v) _At°1_8_p +At‘lu{8 ‘2}+8 ‘2}}
ox 0y p Oy p ox= 0Oy




Velocity Correction Equation — X Momentum

n

2 2
u"t! :u”—At.(ug—u-l— v@_u) —At.l—a—p At-ﬂ{a Z ‘ th}
ox | 0y p 0x p 0x°  dy
n * 2 2 "
u*:u”—At.(uﬁ—u-l-Va—u) —Af-l_a_p +At'lu{a Zt"'@ Zt}
ox oy p Ox p 0x* 0y

n+1 *
u""—u = — At 19 + At. 19
0o 0x p 0Xx



Velocity Correction Equation — Y Momentum

n n+1 n

Dl ov ov 1 oOp u 0°v N 0%v

v =v'—At(u—+v—)| - At.——=— + At.
P ay) p Oy P{axz 5Y2}
n * 2 2 "
v’ =v”—At.(ua—v+ V@_v) _Af~1_a_p +At'lu{a ‘2}+ ‘ ‘2)}
Ox 0y p Oy p Ox~ 0Oy

n+1 *
A —At.(l—a—pj + At(l—a—pj
p 0y p 0y



Pressure Corrections

Define
u =u"" —u’ I PR—
It can be shown that
At Op' . At Op'
S

Substituting for velocity & pressure corrections, we get

* *

0°p 0°p p(@u'+8v']: p[@u oV

ox: o ov?  ail s P Azl ox o
y X y t\ ox y

l



Steps Involved In SIMPLE

« At the start of a time step, assume a guess pressure field p’
« Solve momentum equations to get guess velocities u” and v at each node
« Using u” and v~ calculate continuity residue at each point

« From continuity equation residue, solve for pressure correction p at each
node

« Using p solve for velocity corrections
« Update variables as p"'=p™+p, u™'=u"+u, v"*'= v'+v

« And go to next time step



Staggered & Collocated Mesh

Pressure (Cell centers)

Cellcenters

Staggered Semi-Staggered Collocated
O V-velocity V-velocity =
O U-velocity U-velocity :
® Cellvertices Pressure (Cell vertices) -
@

U,V-velocities, Pressure




Staggered Mesh Procedure

* Pressure nodes are taken as the main nodes.
* x-velocity (u) nodes are shifted by dx/2 with reference to pressure nodes .
« and y-velocity (v) nodes are shifted by dy/2 with reference to pressure nodes.

« Such a staggered mesh avoids odd-even decoupling (chequer-board
configuration) between velocities & pressures .



Typical Flow Boundary Conditions

.— u=0, v=0, w=0
(no slip-condition on the wall)

— Far stream b.c. > u=U,, v=0,w=0, p=p,

. _No-sliPD-C. o —F it .

N ‘ _______________________________________ extrapolation
Inlet b.c. — Symmetry

. v=0, y-der. =0




Typical Thermal Boundary Conditions

Flow
Temp. specified — _
T=T Convective b.c
! k(dT/dn) = h(T-T,)
Adiabatic.
Heat flux = 0 Ambient at T,

Radiative b.c.
-k(dT/dn) = se(T4-T,%)
Prescribed heat flux
-k(dT/dn) =q



TURBULENT FLOWS — FUNDAMENTALS
AND ASPECTS OF TURBULENCE
MODELLING FOR NUMERICAL
SIMULATION OF TURBULENT FLOWS



Reynolds experiment




Characterization of Turbulent Flows

 Highly unsteady flows- For e.g. velocity as a function of time would appear random.
« Three dimensional — Time averaged gty. may be two dimensional.

« Contains great deal of vorticity - stretching of vortices increase the turbulence
intensity.

« Turbulence increases the rate of stirring of conserved properties of fluid. Often
called diffusion.

* Increases the mixing of momentum and to reduction of kinetic energy of flow. Often
called dissipation.

* The loss of energy is converted into internal energy of the fluid.

« Contains coherent structures — repeatable and essentially deterministic events —
largely causes mixing.



One characteristic of turbulent flows is their irregularity or randomness. A
full deterministic approach is very difficult. Turbulent flows are usually
described statistically. Turbulent flows are always chaotic. But not all
chaotic flows are turbulent.

Tul;ﬁu’lent’?loWs are dissipative_ Kinetic energy gets converted into

- heatdue to viscous shear stresses. Turbulent flows die out quickly
when norénergy is supplied. Random motions that have insignificant
Viscous losses, such as random sound waves, are not turbulent.

Dissipation in Turbulent flowsc

3-D trans critical flow showing
turbulent vortical structures

W ¥,

] \J
The diffusivity of turbulence cat fe'ﬁap" mi)&gg and increased rates of
momentum, heat, and mass transft tﬁow that looks random but does not
exhibit the spreading of velogcity: ctuatfons through the surrounding fluid is
not turbulent. If a flow is chaotic, QUt”not diffusive, it is not turbulent. -

Diffusion in Turbulent flows

Flat Plate

Jet Delivery Tube

Coherent structures in jet in cross flow



