

5. VERIFICATION OF MAXWELL'S RECIPROCAL THEOREM

Ex. No.: 3 Date: 29.04.2018

AIM

To verify Maxwell's Reciprocal Theorem

BASIC CONCEPT

Maxwell's Reciprocal Theorem is as follows:

The deflection at A due to unit force at B is equal to deflection at B due to unit force at A.

Thus $\delta_{AB} = \delta_{BA}$

APPARATUS

- 1. Deflection bench arrangement
- 2. Deflectometer
- 4.Scale

PROCEDURE

- 1. Place the given beam over the supports and measure the span of the beam.
- 2. Place the load at ¹/₄th of span (point A) from left hand side and place the deflection at mid span of the beam (point B).
- 3. Load the beam at an uniform rate at point A from 1 kg to 4 kg and note down the corresponding deflectometer readings at point B.
- 4. Remove load at point A at the same uniform rate and note down the corresponding deflectometer readings at point B.
- 5. Place load at point B and deflectometer at point A.
- 6. Load the beam at an uniform rate at point B from 1 kg to 4 kg and note down the corresponding deflectometer readings at point A.

TABULATION

Table 1: Load at A and deflection at B

Least count of the deflectmeter = 0.01 mm

S.No.	Load in		Deflectmeter reading at B (Deflection, δ)					
	kg	N	Loading (Divisions)	Unloading (Divisions)	Mean (Divisions)	Deflection (mm)		
1	0.5	4.9	17	16	16.5	0.165		
2	1.0	9.8	32	32	32	0.32		
3	1.5	14.7	46	47	46.5	0.465		
4	2.0	19.6	63	63	63	0.63		

Mean: (1.580/4) =0.395

Table 2: Load at B and deflection at A

Least count of the deflectmeter = 0.01 mm

S.No.	Load in		Deflectmeter reading at A (Deflection, δ)				
	kg	N	Loading (Divisions)	Unloading (Divisions)	Mean (Divisions)	Deflection (mm)	
1	0.5	4.9	15	16	15.5		0.15
2	1.0	9.8	31	32	31.5		0.31
3	1.5	14.7	45	48	46.5		
4	2.0	19.6	60	60	60		0.6

Mean: (1.535/4) =0.38375

7.	Remove load at point B at the same uniform rate and note down the corresponding deflectometer
	readings at point A.

8. The results are tabulated.

RESULT

Deflection at A due to force at B is 0.38375, and, deflection at B due to force at A is 0.395.

INFERENCE

Successfully verified Maxwell's Reciprocity Theorem, experimentally.